如图 圆o是rt三角形abc的内切圆 角c 90,ao的延长线交bc

来源:学生作业帮助网 编辑:作业帮 时间:2022/07/07 18:01:42
三角形abc是圆o的内接三角形

三角形ABC是圆O的内接三角形,AC=BC,D为圆O中弧AB上一点,延长DA至点E,使CE=CD,1.求证AE=CD;2.若AC⊥BC,求证AD+BD=√2CD1.连接BD因为AC=BC所以角B=角C

设O是三角形ABC所在的平面内一点.求解数学题

∵a+b+c=0∴a+b=-c即OA+OB=-OC取AB中点为P则OA+OB=2OP∴OC=-2OP∴C,O,P三点共线,且|OC|=2|OP|CP是中线,那么O是三角形的重心,a●b=b●c=c●a

若O是三角形ABC内一点,满足向量OA+向量OB+向量OC=向量0,求证:O是三角形ABC的重心

设AB中点为D,则向量OA+向量OB=2向量OD=-向量OC则COD共线,即CD是AB的中线,同理可得其他两条中线,而重心是三角形三边中线的交点,那么O是三角形ABC的重心

已知三角形ABC,点P是平面ABC外一点,点o是点p在平面ABC上的射影,且点o在三角形ABC内

一楼的错,应该是内心作PD⊥AB于D,PE⊥BC于E,PF⊥AC于F连接OD,OE,OF由勾股定理得:OD=OE=OFO到三角形ABC的三边距离相等故O是内心

AC*BC=AE*AD 三角形ABC内接于圆O,AE是圆O的直径,AD是三角形ABC中BC边上的高

分析:求线段的比,可以考虑用相似三角形对应边成比例来求;首先寻找相似三角形△AEC与△CBD,然后根据相关判定条件寻找解答即可.证明:连接EC,∴∠B=∠E.∵AE是⊙O的直径,∴∠ACE=90°.∵

如图,已知Rt三角形ABC内接于圆o,AC是圆o直径,D是弧AB的中点,过D作BC的垂线,

解∵AC为直径,∴AB⊥BC,∵EF⊥BC,∴AB∥EF,∵弧AD=弧BD,∴AB⊥OD,(过圆心平分弧的直线垂直平分弦),∴OD⊥EF,∴EF为圆O的切线.

已知三角形ABC内接于圆O,BC是圆O的直径,AD是三角形ABC的高,OE平行AC,OE交AB于E.

证明:∵OE∥AC∴△BOE∽△BCA∴OB/BC=BE/AB∴BE=AB*OB/BC∵OB是半径,BC是直径∴BC=2OB∴BE=AB*OB/2OB=AB/2∴BE=AE又∵∠BAC是直径所对圆周角

如图圆o是rt三角形abc的内切圆,角abc=90度,ab=13.ac=12.则阴影部分面积为

整体思路为三角形减去圆面积,圆心连三个顶点,用面积来算出半径,就可以得出答案再问:怎么算圆的半径再答:AC*R+BC*R+AB*R=三角形面积也就是AC*BC/2再答:前面忘了除以2了,SORRY

如图圆o是rt三角形abc的内切圆,角abc=90度,ab=13.

由题意:BC=根(AB²-AC²)=5,所以三角形的面积s=1/2ACBC=30..所以.的内切圆半径r=2s/(a+b+c)=60/30=2,故s阴影=30-4π.选D.

5.△ABC是⊙O的内接三角形,AB=AC

我想问一个问题,这个图是题目上的吗,还是你自个儿画的,我觉得图形不标准,因为解得AB长为12再问:不好意思我们老师也弄不懂全班同学崩溃了有四道作业题目这只是第一题我也没想到那么变态再答:我看过了,这个

三角形ABC是圆o的内接三角形,若角ABC=70度,则角AOC=?3Q

140度圆内相同的弧所对应的圆周角是相应的圆心角的一半

怎么证明三角形ABC是RT三角形

假如小正方形边长是1,分别算出AB和BC及AC的边长,你会发现AB^2+BC^2=AC^2则可以得出此三角形为直角三角形

在平面直角坐标系中,三角形abc是圆o的内接三角形

到三个顶点的距离相等的,就是内接三角形,你可以将三个顶点到对边中点的连线相交,就是这个外接圆的圆心.

已知O是三角形ABC内一点,求证.

(1)∵O是△ABC内一点,由∠BOC+∠OBC+∠OVB=180°,①又∠A+∠B+∠C=180°,②①-②得∠BOC=∠A+∠ABO+∠ACO,∴∠BOC>∠A.(2)过O作OM‖AC交AB于M,

已知三角形ABC中,O是三角形ABC内一点,向量OA+OB+OC=0,判断o是三角形ABC的重心还是外心,说明理由

设A,B,C坐标为(x1,y1),(x2,y2),(x3,y3)点O坐标(x,y)OA+OB+OC=0x1-x+x2-x+x3-x=0y1-y+y2-y+y3-y=0x=(x1+x2+x3)/3y=(

O是三角形ABC内的一点,求证OB+OC小于AB+AC

延长BO交AC于D三角形ABD中,AB+AD>BD三角形CDO中,CD+OD>OC所以AB+AC>BD+CD>BO+CO直接画图就可以了,用三角函数只会越做越麻烦

圆o的内接三角形abc,

证明:连结AO并延长交圆O于点G,连结GC因为BE*AE=DE*EF,所以BE/EF=DE/AE,角AEF=角DEB所以三角形AEF相似于三角形DEB,所以角FAE=角BDE又DE平行于AC,所以角B

在rt三角形abc中,角acb=90°,bc>ac,圆o是三角形abc的外接圆,以c为圆心,bc为半径作

(1)证明:连接CE因为CD=CE=CB所以角CDE=角CED角CEB=角CBE因为角ACB=90度角ACB+角CDE+角CED+角CEB+角CBE=360度所以角CDE+角CBE=135度角CED+