作业帮 > 数学 > 作业

如图,在三角形abc中,角acb=90°,ac=bc,bd是中线,ce⊥bd于点e,交ab于点f.请说明为什么∠adf=

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/05/21 10:52:08
如图,在三角形abc中,角acb=90°,ac=bc,bd是中线,ce⊥bd于点e,交ab于点f.请说明为什么∠adf=∠cde
取AG的中点H,连接CH交BD于E'
容易证明△CAH≌△BCD
∴ ∠HCA=∠DBC,∠CHA=∠BDC
因此 ∠HCA+∠BDC=∠DBC+∠BDC=90°
就是 △CDE'中的∠E'CD+∠E'DC=90°
∴ ∠CE'D=90°
故E'与E重合,同时F在CH上
在△FDA与△FHA中
∵ FA=FA,DA=HA,∠FAD=∠FAH=45°
∴ △FDA≌△FHA
从而证得 ∠ADF=∠FHA=∠CDE