设n阶实方阵A的所有特征值的模都小于1,证明limk→ ∞ A^k =0

来源:学生作业帮助网 编辑:作业帮 时间:2024/06/06 06:40:24
设n阶方阵,A不等于0,A的m次方等于0,求A的特征值

设a是A的特征值,则对任意多项式f,若f(A)=0则f(a)=0(特征值都是最小多项式的根,最小多项式整除任意化零多项式,所以特征值是任意化零多项式的根).现在f(A)=A^m=0,所以f(a)=a^

设n阶方阵A的元素全为1,则A的n个特征值是?

显然0是它的特征值,并且以0为特征值的基础解系有n-1个,故有0的重数是n-1;又因为每行都有n个1,考虑到(n-1)*1+(1-n)=0所以它还有特征值n.其实对于后面一个特征值,你也可以看看特征值

设n阶方阵A的特征值为0,1,……,n-1,证明:A+E可逆

设A的特征值为λ,则A+E的特征值为λ+1(这儿使用的是公式:f(A)的特征值为f(λ))从而因为A的特征值为0,1,……,n-1,所以A+E的特征值为1,2,……,n,从而|A+E|=n!不等于0,

设n阶方阵A满足A²=2A.证明A的特征值只能是0或2

证明:设a是A的特征值则a^2-2a是A^2-2A的特征值因为A^2-2A=0所以a^2-2a=0所以a(a-2)=0所以a=0或a=2.即A的特征值只能是0或2.

设A是n阶方阵,2,4,...,2n是A的n个特征值,计算行列式/A-3E/的值

因为2,4,...,2n是A的n个特征值,所以A-3E的特等值为2-3=-1,4-3=1,6-3=3,8-3=5...,2n-3所以|A-3E|=-1X1X3X5X...X(2n-3)=-1X3X5X

设3阶方阵A的特征值为-1 2 -3,则A‘的特征值为

A*=A的行列式乘以A的逆=(-1乘以2乘以-3)乘以A的逆=6倍的A逆3阶方阵A的特征值为-12-3,A逆的特征值为-1,1/2,-1/3,所以A*的特征值为-6,3,-2

设N阶方阵A的特征值为λ,证明:2A+E(E为n阶单位阵)的特征值为2λ+1

设λ对应的A的特征向量为x,则Ax=λx,那么(2A+E)x=2Ax+x=2λx+x=(2λ+1)x,由特征值定义可知2λ+1是2A+E关于特征向量x的特征值

问一个线性代数的问题设n阶方阵A的各特征值都大于0,为什么A+E的各特征值都大于1?

因为A+E的特征值分别是A的特征值+1!再问:就是问为什么啊。。再答:这个书上有结论的,其实证明也很简单:设a为A的任一特征值,x为对应的特征向量,即Ax=ax于是(A+E)x=Ax+Ex=ax+x=

设A为N阶方阵,A的m次方=0,m是自然数,则A的特征值为

A的m次方的特征值=A的特征值的m次方,故先求A的m次方的特征值.既然A的m次方=0,0矩阵的特征值当然是0,故A的m次方的特征值为0.故A的特征值=0.

设λ 是n阶方阵A的特征值,证明:Α+2E的特征值为λ+2.

λ是n阶方阵A的特征值,则:Ax=λx,其中x是λ对应的特征向量.考察(A+2E)x(A+2E)x=Ax+2Ex=λx+2x=(λ+2)x所以Α+2E的特征值为λ+2,同时可以看到,对应的特征向量不变

设n阶方阵A的各列元素之和为5,则A的一个特征值是

A的一个特征值是5A的特征值是|λE-A|=0的根,考虑方阵λE-A,他的各列元素之和是λ-5因为λE-A是把A取负再把每一列的某个元素加上一个λ.这样根据行列式的性质,通过变换:把第2至第n行各加到

设为n阶方阵,为的伴随矩阵,若有特征值为λ,则A-1的特征值之一为

x为特征值Aa=xaA*Aa=xA*a|A|a=xA*aA*a=(|A|/x)a即A*的特征值与A特征值的关系为λ(A*)=|A|/λAa=xaAAa=xAaA^2a=x(xa)=x^2aA^2的特征

求线性代数特征值 1.设A,B都是n阶方阵,且B可逆,则B-1A与AB-1有相同的特征值

1.因为B^-1A=B^-1(AB^-1)B所以B^-1A与AB^-1相似所以它们有相同的特征值.2.设a为A的特征值则a^2-1是A^2-E的特征值因为A^2-E=0,零矩阵的特征值只能是0所以a^

设Jn是所有元素均为1的n阶方阵(n≥2),则Jn的互不相同的特征值的个数为______.

由题意,r(Jn)=1,而n≥2,∴Jn必有0特征值同时,JnX=0的基础解系含有n-1个解向量∴Jn的0特征值的重数为n-1而矩阵特征值之和等于矩阵的迹∴Jn的特征值之和为n∴Jn还有一个特征值n∴

设A是n阶方阵,A有n个不同的特征值是A与对角相似的?条件...

填入:充分若A有n个不同的特征值,则A与对角相似.但逆不成立.

设n阶方阵A的n个特征值互异,n阶方阵B与A有相同的特征值,证明:A与B是相似的?

因为A的n个特征值互异所以A可对角化,且A相似于对角矩阵diag(a1,...,an)又因为n阶方阵B与A有相同的特征值所以B也可对角化,且B相似于对角矩阵diag(a1,...,an)由相似的传递性

证明:设n阶方阵A满足A^2=A,证明A的特征值为1或0

设a为矩阵A的特征值,X为对应的非零特征向量.则有AX=aX.aX=AX=A^2X=A(AX)=A(aX)=aAX=a(aX)=a^2X,(a^2-a)X=0,因X为非零向量,所以.0=a^2-a=a

设λ=0是n阶方阵A的一个特征值,则|A|=?

行列式的值等于特征值乘积0