设A为n阶方阵,若R(A)=n-2,则AX=0的基础解析所含解向量的个数为

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/11 14:54:57
设A为n阶方阵,证:R(A的n次方)=R(A的n+1次方)(n为自然数)

证明A^(n+1)·x=0和A^n·x=0同如果A非奇异则显然成立,否则利用n-1>=rank(A)>=rank(A^2)>=...>=rank(A^n)>=rank(A^(n+1))>=0中间一定有

设A,B为n阶方阵,证明:如果A*B=0 则R(A)+R(B)

设I为单位矩阵情形一:A=0时,R(A)=0,所以R(A)+R(B)=R(B)=R(IB)

设A为n阶方阵,B为N×S矩阵,且r(B)=n.证明若AB=0则A=0

若AB=0,则说明B的列向量都是AX=0的解因为r(B)=n,所以AX=0至少有n个线性无关的解设解集为S,则r(S)=n-r(A)>=n即r(A)=0所以r(A)=0即A=0

设n阶实方阵A=A^2,E为n阶单位矩阵,证明:R(A)+R(A-E)=n

因为A=A^2所以A(A-E)=0\x0d所以r(A)+r(A-E)≤n.\x0d参:\x0d\x0d又n=r(E)=r(A+E-A)≤r(A)+r(E-A)=r(A)+r(A-E)\x0d参:\x0

设A为n阶方阵,A的秩R(A)=r小于n,那么在A的n个列向量中,

只有极大无关组(含r个向量)才能表示其余的向量任意r个列向量可能线性相关

设n(n>=3)阶方阵A恰有一个特征值为0 则R(A)=?

n-1方阵A相似于一个若尔当矩阵J(上三角阵)J的主对角元都是特征值,“恰好”有一个特征值是0说明J的某一行全为零其他的行都不为0.所以说矩阵的秩就是n-1

线性代数中秩的证明设A为n阶方阵,且A^2=A,若R(A)=r,证明:R(A-E)=n-r..其中E为n阶单位阵

由A^2=A,得A^2-A=0,(A-E)A=0.两n阶矩阵乘积为零矩阵,则两矩阵秩之和不大于n,故由(A-E)A=0得,R(A-E)+R(A)≤n.两矩阵之和的秩不小于两矩阵秩之和,故由(E-A)+

设A为n阶方阵,且A2=A,则R(A)+ R(A- E) =

求法很多,用一种最简单的:根据秩的不等式:R(A)+R(A-E)-n≤R[A(A-E)]=R(A^2-A)又因为:A^2=A,即A^2-A=0(零阵)因此:R(A)+R(A-E)-n≤R[A(A-E)

设A为n阶方阵,AA=A ,证明R(A)+R(A-E)=n

(1)A^2=A,所以A(A-E)=0所以r(A)+r(A-E)=r(A+E-A)=r(E)=n所以r(A)+r(A-E)=n再问:R(A)+R(B)>=R(A+B)这怎么得来的?再答:A的所有列向量

(线性代数)设A,B为n阶方阵,证明:r(AB)>=r(A)+r(B)-n

证明:AB与n阶单位矩阵En构造分块矩阵|ABO||OEn|A分乘下面两块矩阵加到上面两块矩阵,有|ABA||0En|右边两块矩阵分乘-B加到左边两块矩阵,有|0A||-BEn|所以,r(AB)+n=

设矩阵Am*n的秩r(A)=m〈n,B为n阶方阵,则

正确因为B可逆所以RA(B)=R(A)=m.知识点:若P,Q可逆,则R(PA)=R(AQ)=R(PAQ)=R(A)再问:谢谢!!!

设A为n阶方阵,E为n阶单位矩阵,证明R(A+E)+R(A-E)》n,

证明:设A,B为同阶方阵,a1,a2...ar是A的极大线性无关向量组,则:R(A)=r,同理,设b1,b2,..bs为B的极大线性无关向量组,则:R(B)=s而A+B与A和B为同阶方阵,其极大线性无

设A,B为n阶方阵,且r(A)+r(B)

设r(A)=p则存在矩阵P1,Q1使得P1AQ1=C1(C1只有前p行,前p列不为0)则A=P1^-1C1Q1^-1设r(B)=q则存在矩阵P2,Q2使得P2BQ2=C2(C2只有后q行,后q列不为0

设A为n阶方阵,证明:(1)若A^2=A,则r(A)+r(A-E)=n (2)若A^2=E,则r(A+E)+r(A-E)

这里边用到两个结论:r(A+B)=r(A+E-A)=r(E)=n.中间等号必须成立,因此r(A)+r(A-E)=n.2、(A+E)(A-E)=0,因此n>=r(A+E)+r(A-E)=r(A+E)+r

设A为n阶方阵,t为实数,若R(A-tE)=n,则t是不是矩阵A的特征值

因为R(A-tE)=n所以|A-tE|≠0所以t不是矩阵A的特征值再问:为什么R(A-tE)=n时|A-tE|≠0啊能详细解答下吗再答:知识点:n阶方阵A的秩等于n的充分必要条件是|A|≠0.

设A为n阶方阵,且A*A=A,证明R(A)+R(A-E)=n.

因为A*A=A,所以A(A-E)=0;故A-E的每个列向量都是方程Ax=0的解,由于A-E中的列向量未必构成解空间的基,所以R(A)+R(A-E)小于等于n;又由R(A)+R(B)>=R(A+B);立

设A为n阶(n≥2)方阵,证明r(A*)= n ,r(A)=n r(A*)= 1,r(A)=n-1 r(A*)= 0,r

点击看大图:再问:当r(A)=n-1时,A至少有一个n-1阶子式不为0,那为什么A*≠0?再答:A*是由代数余子式Aij构成的Aij=(-1)^(i+j)MijMij包含了A的所有n-1阶子式所以至少

设n方阵A满足A^2=A,E为n阶单位矩阵,证明R(A)+R(A-E)=n

因为A*A=A,所以A(A-E)=0;故A-E的每个列向量都是方程Ax=0的解,由于A-E中的列向量未必构成解空间的基,所以R(A)+R(A-E)小于等于n;又由R(A)+R(B)>=R(A+B);立

若A为n阶实方阵,证:r(A)=r(AT A)

1设方程AX=0则ATAX=0所以,满足AX=0的解一定满足ATAX=02设方程ATAX=0则XTATAX=0(AX)TAX=0所以AX=0,那么满足ATAX=0的解一定满足AX=0由12可知AX=0