设a为n阶方阵,R(A)=r

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/28 02:38:38
设A为n阶方阵,证:R(A的n次方)=R(A的n+1次方)(n为自然数)

证明A^(n+1)·x=0和A^n·x=0同如果A非奇异则显然成立,否则利用n-1>=rank(A)>=rank(A^2)>=...>=rank(A^n)>=rank(A^(n+1))>=0中间一定有

设A,B为n阶方阵,证明:如果A*B=0 则R(A)+R(B)

设I为单位矩阵情形一:A=0时,R(A)=0,所以R(A)+R(B)=R(B)=R(IB)

设n阶实方阵A=A^2,E为n阶单位矩阵,证明:R(A)+R(A-E)=n

因为A=A^2所以A(A-E)=0\x0d所以r(A)+r(A-E)≤n.\x0d参:\x0d\x0d又n=r(E)=r(A+E-A)≤r(A)+r(E-A)=r(A)+r(A-E)\x0d参:\x0

设A为n阶方阵,A的秩R(A)=r小于n,那么在A的n个列向量中,

只有极大无关组(含r个向量)才能表示其余的向量任意r个列向量可能线性相关

设n(n>=3)阶方阵A恰有一个特征值为0 则R(A)=?

n-1方阵A相似于一个若尔当矩阵J(上三角阵)J的主对角元都是特征值,“恰好”有一个特征值是0说明J的某一行全为零其他的行都不为0.所以说矩阵的秩就是n-1

设A为n阶方阵,且A2=A,则R(A)+ R(A- E) =

求法很多,用一种最简单的:根据秩的不等式:R(A)+R(A-E)-n≤R[A(A-E)]=R(A^2-A)又因为:A^2=A,即A^2-A=0(零阵)因此:R(A)+R(A-E)-n≤R[A(A-E)

设A为n阶方阵,AA=A ,证明R(A)+R(A-E)=n

(1)A^2=A,所以A(A-E)=0所以r(A)+r(A-E)=r(A+E-A)=r(E)=n所以r(A)+r(A-E)=n再问:R(A)+R(B)>=R(A+B)这怎么得来的?再答:A的所有列向量

(线性代数)设A,B为n阶方阵,证明:r(AB)>=r(A)+r(B)-n

证明:AB与n阶单位矩阵En构造分块矩阵|ABO||OEn|A分乘下面两块矩阵加到上面两块矩阵,有|ABA||0En|右边两块矩阵分乘-B加到左边两块矩阵,有|0A||-BEn|所以,r(AB)+n=

设A,B是n阶方阵,且r(A)=r(B),则

选项A,B,C是瞎扯,没这结论r(A+B)≤r(A)+r(B)正确,但与已知r(A)=r(B)没关系.怪怪的

设A为n阶方阵,A不等于I,且满足r(A-I) r(A-3I)=n,证明x=3是的A特征值.

(A-I)r(A-3I)=n是加号连接吧即r(A-I)+r(A-3I)=n因为A≠I,所以A-I≠0,所以r(A-I)>=1所以r(A-3I)

设A为n阶方阵,E为n阶单位矩阵,证明R(A+E)+R(A-E)》n,

证明:设A,B为同阶方阵,a1,a2...ar是A的极大线性无关向量组,则:R(A)=r,同理,设b1,b2,..bs为B的极大线性无关向量组,则:R(B)=s而A+B与A和B为同阶方阵,其极大线性无

设A,B为n阶方阵,且r(A)+r(B)

设r(A)=p则存在矩阵P1,Q1使得P1AQ1=C1(C1只有前p行,前p列不为0)则A=P1^-1C1Q1^-1设r(B)=q则存在矩阵P2,Q2使得P2BQ2=C2(C2只有后q行,后q列不为0

设A为n阶方阵,且A^2-A=2I,证明:R(2I-A)+R(I+A)=n

由A²-A=2I得A²-A-2I=0(A-2I)(A+I)=0所以R(A-2I)+R(A+I)≤n又R(A-2I)=R(2I-A)故R(2I-A)+R(A+I)≤n又R(2I-A)

设A为n阶方阵,且A^2=A+2I,证明r(A-2I)+r(A+I)=n

第一个“→”的变换是指:把第一行乘以"I"加到第二行第二个“→”的变换是指:把第二列乘以"-I"加到第一列第三个“→”的变换是指:把第二行乘以"1/3(A-2I)"加到第一行第四个“→”的变换是指:把

设A为n阶方阵,A*为A的伴随矩阵,证明:n,r(A)=n r(A*)= 1,r(A)=n-1 0,r(A)

当R(A)=n时,有A可逆,|A|≠0,由AA*=|A|E,说明A*可逆,R(A*)=n当r(A)=n-1时,有A不可逆,|A|=0所以AA*=|A|E=0,所以r(A*)=1.所以r(A*)=1当r

设A为n阶方阵,且A*A=A,证明R(A)+R(A-E)=n.

因为A*A=A,所以A(A-E)=0;故A-E的每个列向量都是方程Ax=0的解,由于A-E中的列向量未必构成解空间的基,所以R(A)+R(A-E)小于等于n;又由R(A)+R(B)>=R(A+B);立

(ii) 设A,B为n阶方阵,r(AB)=r(B),证明对于任意可以相乘的矩阵C均有r(ABC)=r(BC).

证明:分两步(1)ABX=0与BX=0同解显然,BX=0的解都是ABX=0的解所以BX=0的基础解系可由ABX=0的基础解系线性表示.由已知r(B)=r(AB)所以两个基础解系所含向量个数相同故两个基

设A为n阶(n≥2)方阵,证明r(A*)= n ,r(A)=n r(A*)= 1,r(A)=n-1 r(A*)= 0,r

点击看大图:再问:当r(A)=n-1时,A至少有一个n-1阶子式不为0,那为什么A*≠0?再答:A*是由代数余子式Aij构成的Aij=(-1)^(i+j)MijMij包含了A的所有n-1阶子式所以至少

设n方阵A满足A^2=A,E为n阶单位矩阵,证明R(A)+R(A-E)=n

因为A*A=A,所以A(A-E)=0;故A-E的每个列向量都是方程Ax=0的解,由于A-E中的列向量未必构成解空间的基,所以R(A)+R(A-E)小于等于n;又由R(A)+R(B)>=R(A+B);立