A是数域K上n阶方阵,存在次数小于等于n平方的多项式f(x),使得f(A)=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/11 18:53:16
设A为n阶方阵,且A^k=0(k为正整数),则( ).

n阶方阵在复数域上有几个特征值呢?一定是n个,因为特征多项式|aE-A|是关于a的n次多项式,必有n个根.总之,计入复根,则A必有n个特征值.接下来如果特征值是a,那么由定义定有AX=aX于是a^kX

A为n阶方阵,证明:若存在正整数k使A^k=0,则A的特征值只能是0

需两个知识点:1.零矩阵的特征值只有零2.若λ是A的特征值,g(x)是x的多项式,则g(λ)是g(A)的特征值本题目的证明:设λ是A的特征值,则λ^k是A^k的特征值因为A^k=0,而零矩阵的特征值只

设A为n阶方阵,k是常数,证明:|kA|=k的n次方|A|

这是方阵行列式的基本性质kA是A中所有元素都乘以k取行列式|kA|:每一行都有一个k公因子,根据行列式的性质,每行提出一个k所以:|kA|=k^n|A|

:设A是元素为整数的n阶方阵,则存在元素为整数的n阶方阵B,使得AB=E的充分必要条件

存在元素为整数的n阶方阵B,使得AB=E,即方阵A存在逆矩阵.一个方阵,存在逆矩阵的充分必要条件是行列式不为0

设A是N阶方阵,若存在N阶方阵B不等于零,使AB=0(矩阵),证明R(A)

用反证法.若R(A)=N,则A可逆.A^(-1)[AB]=A^(-1)*0=0,又A^(-1)[AB]=B,因此,B=0.与B不等于0矛盾.故,R(A)

A、B喂n阶方阵,设A~B,证明:A^k~B^k(k为正整数)

因为A~B设B=PAP-1则B^k=(PAP-1)^k=(PAP-1)(PAP-1)...(PAP-1)=PA(P-1P)A(P-1P)...AP-1=P(A^K)P-1所以A^k~B^k

设A为n阶方阵,若已知r(A)=1,证明存在常数k使A^2=kA

证:∵rank(A)=1,A为n阶方阵∴A=αβ'('表示转置)∴A²=αβ'αβ'=α(β'α)β'令k=β'α,∴A²=kαβ'=kA结论得证!

设A是n阶方阵,若存在n阶方阵B不等于0,使AB=0,证明R(A)小于n.

因为B≠O(矩阵),所以存在B的一列b≠0(列向量)因为AB=0,所以Ab=0即齐次线性方程组AX=0存在非零解,所以R(A)

证明:若n阶方阵A的特征值全是0,则存在正整数k,使得A^k=0

设a是特征值,对应的特征向量为x,即Ax=ax,左乘A得A^2x=aAx=a^2x,继续递推下去有A^kx=a^kx,即a^k是A^k(=0)的特征值,因为a=0,所以A^k=a^k=0

设A为n阶方阵,且R(A)=n-1,A*为矩阵A的伴随矩阵,求证∶存在常数k,使(A*)^2=kA*

R(A)=n-1=>|A|=0=>AA*=|A|E=0又因为R(AA*)》R(A)+R(A*)-n因此R(A*)《1有因为R(A)=n-1,即至少有一个n-1阶子式不等于0,即R(A*)》1所以R(A

设A是n阶方阵,若存在n阶非零方阵B,使得AB=BA=B,则A=E.为什么是错的?

因为矩阵B不一定可逆,如果B可逆,则由AB=B两边左乘B^(-1)就得到A=E,但是现在不知道B是否可逆,只能得到AB-B=O,即(A-E)B=O,而我们知道如果AB=O,不一定有A=O或B=O成立,

设A是N阶方阵,若存在N阶方阵B不等于零,使AB=0,证明R(A)《N

假设R(A)=N那么A为满秩矩阵,那么A可逆,A*A的逆矩阵*B=0,所以B=0,与条件矛盾.所以R(A)〈N

设A为n阶方阵,B为n阶可逆阵,若存在正整数k使A^k=O,则矩阵方程AX=XB仅有零解

要多说明一点,你取的k是最小的使得A^k=0的自然数k.等等-由于A^(k-1)不恒为O,所以X=O-好像有问题...我想一下.这句话应该是对的,但是我要证明的话要用到Jordan形式...(就是只有

若A为n阶方阵,k为非零常数,则|kA|=?A,k|A| B,|k||A| C,(k∧n

kA,是每个元素都乘以k所以取行列式和每行都可以提取k,从而选C,(k∧n)|A|

设A是数域F上的n阶方阵,秩A=1,证明(1)存在n*1矩阵和1*n矩阵C,使A=BC (2)A^2=kA

1、R(A)=1,存在可逆的n阶方阵P、Q,A=PE11Q,E11是第一行第一列元素=1,其他元素都=0的矩阵.A=P(1,0,...,0)^T(1,0,...,0)QB=P(1,0,...,0)^T

设A 是数域F上的n阶方阵,并且有n个特征值.证明,存在数域F上的可逆矩阵P使得P^-1AP为上三角矩阵.

我证的是T^-1AT,你再调整一下字母吧~证明:设λ1,...,λs为A的所有不同的实特征根,且可知A与某一Jordan标准型矩阵J相似,即存在可逆实矩阵P使得P^(-1)AP=J,其中,J1λi1J

A是n阶方阵,若存在n阶方阵B不等于0,使得AB=0,证明A的秩小于n

因为AB=0所以B的列向量都是AX=0的解又因为B≠0,所以AX=0有非零解.所以r(A)

设A是n阶方阵,证明|A|=0存在n阶方阵B≠0使得AB=0

===》如果|A|=0,则0为其特征根,于是存在列向量x1,使得Ax1=0设列向量x2=...=xn=0,设B=(x1,x2,...,xn),则B≠0,且AB=A(x1,x2,...,xn)=(Ax1

证明n阶方阵A为数量矩阵,当且仅当入E-A的n-1阶行列式因子的的次数为n一1

必要性显然至于充分性,把λE-A化到Smith型diag{d_1(λ),...,d_n(λ)},d_i|d_{i+1}n-1阶行列式因子是d_1(λ)...d_{n-1}(λ),它的次数是n-1说明d