证明任何一个n维线性空间都可表示n个一维子空间的直和

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/12 10:23:50
无限维线性空间基的存在性证明

能用Zorn引理的话不可数无穷维也不是问题.考虑集合S,其中的元素取遍线性空间V中线性无关的向量组,显然S非空(V不是零线性空间).S上可以定义一偏序关系为包含,即元素a≥b若向量组a包含向量组b.对

T是数域K上的n维线性空间V的一个线性变换,证明:T在任意一组基下的矩阵都相同的充要条件是T是数乘变换

那先随便取定一组基B1,T在这组记下的矩阵设成A.再取另一组基B2两组基间的过渡矩阵P:从B1到B2间的过渡矩阵.(此时B2可以由P唯一决定)T在B2下的矩阵设成C.易知C=P逆*A*P那么这个问题的

T是数域K上的n维线性空间V的一个线性变换,证明:T在任意一组基下的矩阵都相同的充分必要条件是T是数乘变换

知识点:线性变换在不同基下的矩阵相似设T在某基下的矩阵为A.则由已知对任一可逆矩阵P,P^-1AP=A.所以AP=PA所以A为一个数量矩阵kE故线性变换T为数量变换再问:AP=PA则A=kE,有什么依

设n是正整数,V是数域P上的一个n维线性空间,W1.W2都是V的子空间,而且它们的维数和为n,证明:

先取V的一组基{e},这样就可以用具体的坐标来描述所有的东西假定m=dim(W1),k=dim(W2)=n-m,只需讨论m和k都非零的情况,余下的是平凡的取W1的一组基,这组基在{e}下的坐标表示是一

数域P上n维线性空间V的一个线性变换A称为幂零的,如果存在一个正整数m使A^m=0,证明A是幂零变换当且仅当它的特征多项

A为幂零变换的充分必要条件是A在任意基下的矩阵A是幂零矩阵.问题转换为“A为幂零矩阵的充分必要条件是A的特征值全为0.”再问:谢谢你。再答:不客气。

证明:所有N阶对称矩阵组成(N^2+2N)/2维线性空间;所以反N阶对称矩阵组成(N^2-N)/2维线性空间;

n阶对称矩阵的主控元素是主对角线上方(含主对角线)的元素记Eij为第i行第j列元素为1,第j行第i列元素为1,其余全是0的n阶矩阵则Eij,i

怎么证明一个线性空间是赋范空间 急

只要满足范数的三个条件即可:1、||x+y||

n维向量空间里n个线性无关的向量是否一定能线性表示出所有此空间中的向量?求证明

可以.一个向量b能否由一个向量组a1,...,as线性表示等价于线性方程组x1a1+...+xsas=b是否有解即(a1,...,as)x=b是否有解.n维向量空间里n个线性无关的向量a1,...,a

线性代数证明题设v是某数域上的n维线性空间,证明存在v的无限子集s,使得s中任意n个向量都是线性无关的.写的详细再加五十

设V是数域K上的n维线性空间,可知V同构于向量空间K^n,故只需讨论V=K^n的情形.考虑V的子集S={(1,a,a^2,a^3,...,a^(n-1))|a∈K}.K作为数域,总是无限集,故S也是无

试证明如果线性空间中的每一个向量都可以唯一写成为该空间中n给定向量的线性组合,那么该线性空间是n维的

从线性空间的基的定义可以知道,从线性空间的维数n的定义可以直接导出.再问:请问证明过程怎么写啊再答:  不好意思,没看全。  法一:直接法  如果线性空间中的每一个向量都可以唯一写成为该空间中n个给定

在线性空间Pn乘以n中,A是一个取定的n阶方阵.证明所有与A乘法互换的矩阵全体W是P的一个子空间

设B,C是W中任意两个元素,则(kB)A=k(BA)=k(AB)=A(kB),即kB∈W.(B+C)A=BA+CA=AB+AC=A(B+C),即B+C∈W,因此W对于加法和数乘运算封闭,W是一个子空间

设T为数域P上n维线性空间V的一个线性变换,且T^2=I.证明:1.T特征值只能为1或-1;

第一问:设ξ是线性变换T的任一个特征向量,对应的特征值是λ,则有Tξ=λξ,两边左边用T作用,得T^2(ξ)=T(Tξ)=λTξ=λ^2ξ,而由已知,T^2=I,故λ^2ξ=ξ,因为ξ≠0==>λ^2

37.设σ是F上n维线性空间V的一个线性变换.证明:1.在F[x]中存在次数≤n2的非零多项式f(x),使f(σ)=0

σ作为V中的线性变换,我们考虑其在基下的矩阵A,显然是个n阶方阵.我们取A的特征多项式f(x),显然f(x)∈F[x],且根据Hamilton-Cayley定理有f(A)=0,进而f(σ)=0.并且f

设V是数域P上的n维线性空间,W是V的子空间,证明:W是某个线性变换的核.

设V是数域P上的n维线性空间,W是V的一个s维子空间,那么,取定W的一个基:E1,E2,...,Es,将W的这个基扩充为V的一个基,记为,E1,E2,...,Es,Es+1,...,En现在我们构造一

设V为n维线性空间,其中n>1.证明:对任意的1≤r

V必存在一组正交基r=1V的基的线性组合有无穷多个,可组成无穷多彼此间线性无关的子空间的基,这是因为,n元齐线性方程组有无穷多个,且必有解.1

证明所有m*n矩阵的集合是一个m*n维的线性子空间

m*n个元素中只有一个,明显是1,其余的是0,这样的矩阵有m*n个1,这m*n个矩阵构成一组基2,任意m*n阶矩阵可由这m*n个矩阵线性表示(普通意义上的矩阵加法和数乘)所以求证所有m×n阶矩阵的集合

怎样证明一个集合是一个线性空间的子空间?

证明子集是子空间,只需验证对加法和数乘封闭