设是n维线性空间v的线性变换,如果有向量使,证明线性无关

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/11 14:12:40
T是数域K上的n维线性空间V的一个线性变换,证明:T在任意一组基下的矩阵都相同的充要条件是T是数乘变换

那先随便取定一组基B1,T在这组记下的矩阵设成A.再取另一组基B2两组基间的过渡矩阵P:从B1到B2间的过渡矩阵.(此时B2可以由P唯一决定)T在B2下的矩阵设成C.易知C=P逆*A*P那么这个问题的

T是数域K上的n维线性空间V的一个线性变换,证明:T在任意一组基下的矩阵都相同的充分必要条件是T是数乘变换

知识点:线性变换在不同基下的矩阵相似设T在某基下的矩阵为A.则由已知对任一可逆矩阵P,P^-1AP=A.所以AP=PA所以A为一个数量矩阵kE故线性变换T为数量变换再问:AP=PA则A=kE,有什么依

七、设W1和W2是n维向量空间V的两个子空间,且维数之和为n,证明:存在V上的线性变换σ,使ker(σ)=W1,Im(σ

设ε1……εr和α1……αn-r分别是W1和W2的一组基,可知ε1……εr可扩充为V的一组基,设扩充后这组基变为ε1……εn,则对于V中的任意一个元素ζ=k1ε1+……+knεn,设变换σ把它变换为η

线性变换:设A是数域P上偶数维线性空间V上的线性变换,那么A与-A具有相同的( )

选B:行列式.再问:为什么呢?再答:因为A和-A在同一基下的矩阵B,C满足:B=-C.取行列式有|B|=|-C|=(-1)^n*|C|=|C|.

设A是线性空间V的一个线性变换,证明下列两个条件是等价的:A把V中某一线性无关的向量变成一组线性相关的

(1)到(2)a1,...,as线性无关Aa1,...,Aas线性相关则存在一组不全为0的数使得k1Aa1+...+ksAas=0所以A(k1a1+...+ksas)=0因为a1,...,as线性无关

证明是线性空间设V是数域F上的线性空间,W是V的一个子空间,U={σ是V的一个线性变换|σ(V)是W的子集}.证明:U关

零变化属于U所以U分非空任意σ1σ2属于U那么对于任意x属于V有σ1(x)=k1xσ2(x)=k2x所以(σ1+σ2)(x)=(k1+k2)x所以(σ1+σ2)属于U任意σ1属于Um属于F对于任意x属

设A为数域P上的n维线性空间V的线性变换,且A^2=A

(1)两个子空间的和是直和只需要证明它们的交只有零向量.设Y∈ker(A)∩im(A),则AY=0且存在X使Y=AX.∵A²=A,∴Y=AX=A²X=A(AX)=AY=0.即ker

问刘老师,设a为线性空间V的一个线性变换,A为a在某组基下的矩阵

特征值的和等于矩阵的迹tr(A)=a11+a22+...+ann

v是数域p上的n维线性空间,T是v的线性变换.证明,存在v的线性变换S,使得TST=T

不太会证,用矩阵的语言说明思路吧.矩阵T的等价标准型为D=【E0;00】,其中E是单位阵,阶数是T的秩,也就是变换T的像空间的维数.故存在可逆矩阵P,Q使得PTQ=D,令S=QP,则TST=P^(-1

设σ是线性空间V上的可逆线性变换,证明:(1)σ的特征值一定不为零.

设A是线性空间V上的可逆线性变换σ的矩阵,则A是可逆矩阵,于是|A|不为零,而|A|等于矩阵A的所有特征值之积,所以矩阵A的所有特征值之积也不为0.所以A的所有特征值也不为0.A的特征值就是σ的特征值

设T为数域P上n维线性空间V的一个线性变换,且T^2=I.证明:1.T特征值只能为1或-1;

第一问:设ξ是线性变换T的任一个特征向量,对应的特征值是λ,则有Tξ=λξ,两边左边用T作用,得T^2(ξ)=T(Tξ)=λTξ=λ^2ξ,而由已知,T^2=I,故λ^2ξ=ξ,因为ξ≠0==>λ^2

设a1,a2...an是n维线性空间的一组基,b1,b2...,bs是V的一组向量

你好!很高兴为你解答,~如果你认可我的回答,请及时点击【采纳为满意回答】按钮~~手机提问者在客户端右上角评价点“满意”即可.~~你的采纳是我前进的动力~~祝你学习进步!有不明白的可以追问!谢谢!~

37.设σ是F上n维线性空间V的一个线性变换.证明:1.在F[x]中存在次数≤n2的非零多项式f(x),使f(σ)=0

σ作为V中的线性变换,我们考虑其在基下的矩阵A,显然是个n阶方阵.我们取A的特征多项式f(x),显然f(x)∈F[x],且根据Hamilton-Cayley定理有f(A)=0,进而f(σ)=0.并且f

设V是数域P上的n维线性空间,W是V的子空间,证明:W是某个线性变换的核.

设V是数域P上的n维线性空间,W是V的一个s维子空间,那么,取定W的一个基:E1,E2,...,Es,将W的这个基扩充为V的一个基,记为,E1,E2,...,Es,Es+1,...,En现在我们构造一

1、设B是数域P上n维线性空间V的线性变换,B属于V,若B^(n-1)(a)!=0,B^n(a)=0,证明:a,B(a)

证:设k0a+k1B(a)+k2B^2(a)+……+k(n-1)B^(n-1)(a)=0(1)用B^(n-1)作用等式两边,因为B^n(a)=0,故得k0B^(n-1)(a)=0.又因为B^(n-1)

设A为数域P上的线性空间V的线性变换,证明:

用反证法.若λ=0是特征值,ξ是对应的特征向量,那么:   Aξ=λξ=0于是,一方面:A^(-1)[Aξ]=A^(-1)[0]=0另一方面:A^(-1)[Aξ]=[A^

设α是n维线性空间 V的线性变换,那么 α是双射 α是单位变换(×)

双射与单位变换是两回事双射是一一对应单位变换是恒等变换