设A为列满秩矩阵,AB=C,证明线性方程Bx=0与Cx=0同解

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/14 19:48:36
线性代数,这个怎么证:设A是m*n矩阵,B是n*m矩阵,证明当m>n时,方阵c=AB不可逆.

因为C=AB是m*m阶矩阵,又因为r(A)≤n,同理r(B)≤n,由公式r(AB)≤min[r(A),r(B)]得r(AB)≤n,而m﹥n,所以|AB|=0,所以C=AB不可逆.“不可逆”等价于“方阵

设A,B为两个n阶正定矩阵,证明:AB为正定矩阵的充要条件是AB=BA.

证明:因为A,B正定,所以A^T=A,B^T=B(必要性)因为AB正定,所以(AB)^T=AB所以BA=B^TA^T=(AB)^T=AB.(充分性)因为AB=BA所以(AB)^T=B^TA^T=BA=

设A为mxn矩阵,B为nxm矩阵,m>n,证明AB不是可逆矩阵?

经济数学团队帮你解答,有不清楚请追问.请及时评价.

设A为n*m矩阵,B为m*n矩阵,证明:当m>n时,方阵C=AB不可逆

C=AB是m*m阶矩阵,由于r(A)≤n,r(B)≤n,利用公式:r(AB)≤min{r(A),r(B)}得r(AB)≤n,而m﹥n,所以|AB|=0,即得C=AB不可逆再问:请问m﹥n,所以|AB|

设A是m*n矩阵,C和B均为n*s矩阵,且AB=AC,B不等于C,证明:r(A)

因为AB=AC所以A(B-C)=0所以B-C的列向量都是Ax=0的解又因为B≠C所以B-C≠0所以Ax=0有非零解所以r(A)

设A,B都是n阶对称矩阵,证明AB为对称矩阵的充分必要条件是AB=BA

充分性:因为AB=BA,所以(AB)'=B'A'=BA=AB,从而AB是对称矩阵必要性:因为AB为对称矩阵,所以AB=(AB)'=B'A'=BA再问:在必要性中,(AB)'怎么=(BA)'的再答:AB

设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则(  )

∵C是n阶可逆矩阵∴C可以表示成若干个初等矩阵之积,即C=P1P2…Ps,其中Pi(i=1,2,…,s)均为初等矩阵.而:B=AC,∴B=AP1P2…Ps,即B是A经过s次初等列变换后得到的,又初等变

设A为m*n的矩阵,B为n*m的矩阵,m>n,证明AB=0

应该是行列式|AB|=0因为A为m*n的矩阵所以r(A)

设A,B均为n阶矩阵,且AB=BA,证r(A+B)

不是这个稍等再问:额,不是这道题啊再答:这个要借助空间维数定理证明:记w1,w2,w3,w4分别为A,B,A+B,AB的行向量组生成的向量空间易知w3包含在w1+w2中.由维数定理dimw3

设A ,B均为正定矩阵,则__ a.AB是正定矩阵,b.A+B是正定矩阵 c.A-B是正定矩阵 d.|A|=|B|

B因为A,B均为正定矩阵所以对于任意的XX'AX>0X'BX>0所以X'(A+B)X=X'AX+X'BX>0根据X任意性(A+B)是正定的

设A B都是n阶对称矩阵,证明AB为对称矩阵的充分必要条件是AB=BA.

证明:必要性由于A,B都是n阶正定矩阵,根据正定矩阵的定义,A,B都是n阶对称矩阵,即A'=A,B'=B(这里A'表示A的转置矩阵).若AB正定,则AB也是对称矩阵,从而AB=(AB)'=B'A'=B

设A为列满秩矩阵,B、C为n*t矩阵,证明AB=BC的充分必要条件是B=C

是AB=AC吧必要性:因为AB=AC所以A(B-C)=0所以B-C的列向量都是齐次线性方程组Ax=0的解而A列满秩,Ax=0只有零解所以B-C=0所以B=C充分性显然.

关于正定矩阵的 急设A为n阶实对称矩阵 证明 B=I+A的平方 为正定矩阵设A为n阶正定矩阵,AB为是对称矩阵,则AB为

1.直接用定义验证x非零时x^TBx>0,当然也可以看特征值2.A=C^TC,那么AB合同于CBC^{-1},然后看特征值

设A为m×n矩阵,B为n×m矩阵,则线性方程组(AB)x=0(  )

因为AB矩阵为m×m方阵,所以未知数的个数为m个,又因为:r(AB)≤r(A)≤n,(1)当m>n时,r(AB)≤r(A)≤n<m,即系数矩阵的秩小于未知数个数,所以方程组有非零解.(2)当m<n时,

设ABC为同阶矩阵,若AB=AC,则B= C对吗

不对.比如B=0;c只是和A相关的为0就不行.AB=AC可变形为A(B-C)=0,即若A不为0,问是否存在D时AD=0?肯定存在,比如A={(1,0)',(0,0)'}D={(0,0)',(0,1)'

关于可逆矩阵的问题(1)A,B,C为n阶矩阵,且AB=BC=CA=E,则A^2+B^2+C^2=还有一题:设n阶矩阵A满

AB=AC=BC=E,可知BA=CA=CB=EA^2+B^2+C^2=(A^2+B^2+C^2)BC=A(AB)C+BB(BC)+C(CB)C=E+BB+CC=(E+BB+CC)AC=E+B(BA)C