设A为n阶方阵,且(A E)k=0.证明A可逆,并求出A-1.

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/17 20:19:53
设A为N阶方阵,满足A^K=0,证明E-A可逆,并且(E-A)^-1=E+A+A^2+...+A^K-1

(E-A)(E+A+A^2+...+A^K-1)=E+A+A^2+...+A^K-1-(A+A^2+...+A^K)=E-A^k=E所以:E-A可逆,并且(E-A)^-1=E+A+A^2+...+A^

设A为n阶方阵,且A^k=O(k为正整数)求证(I-A)^-1=I+A+A^2+A^3+...A^K-1

A^k=O.则A≠II-A^k=(I-A)*(I+A+A^2+A^3+...A^K-1)而A^k=O则(I-A)*(I+A+A^2+A^3+...A^K-1)=I则由可逆矩阵A*A^(-1)=A^(-

设A为n阶方阵,且A^k=0(k为正整数),则( ).

n阶方阵在复数域上有几个特征值呢?一定是n个,因为特征多项式|aE-A|是关于a的n次多项式,必有n个根.总之,计入复根,则A必有n个特征值.接下来如果特征值是a,那么由定义定有AX=aX于是a^kX

设A为n阶方阵,且A的k次幂等于0矩阵,(k为正整数),则() (A)A=0 (B)A有一个不为0的特征值

A的k次幂等于0矩阵指某个正整数kA^k=0设A的特征值λ则:Ax=λx(x≠0为特征向量)A^(k)x=0=λ^(k)x=》λ=0

设A为n阶方阵,k是常数,证明:|kA|=k的n次方|A|

这是方阵行列式的基本性质kA是A中所有元素都乘以k取行列式|kA|:每一行都有一个k公因子,根据行列式的性质,每行提出一个k所以:|kA|=k^n|A|

A、B喂n阶方阵,设A~B,证明:A^k~B^k(k为正整数)

因为A~B设B=PAP-1则B^k=(PAP-1)^k=(PAP-1)(PAP-1)...(PAP-1)=PA(P-1P)A(P-1P)...AP-1=P(A^K)P-1所以A^k~B^k

设A为n阶方阵,且A是可逆的,证明det(adjA)=(detA)的(n-1)次方

有个重要关系式:AA*=det(A)E,A*是A的伴随阵.取行列式得det(A)det(A*)=det(A)^ndet(E)=det(A)^n,由于det(A)不等于0,因此有det(A*)=(det

设A为n阶方阵,且R(A)=n-1,A*为矩阵A的伴随矩阵,求证∶存在常数k,使(A*)^2=kA*

R(A)=n-1=>|A|=0=>AA*=|A|E=0又因为R(AA*)》R(A)+R(A*)-n因此R(A*)《1有因为R(A)=n-1,即至少有一个n-1阶子式不等于0,即R(A*)》1所以R(A

设A是任一n(n≥3)阶方阵,A*是其伴随矩阵,又k为常数,且k≠0,±1,则必有(kA)*=(  )

∵AA*=A*A=|A|E,∴A*=|A|A-1,从而:(kA)*=|kA|•(kA)-1=kn|A|•1kA−1=kn−1|A|A−1=kn−1A*,故选:B.

设A为n阶方阵,且|A|=2,A*为A的伴随矩阵,则|A*|=?

设B为A的伴随矩阵,E为单位阵,AB=|A|E,|A||B|=|A|^n,|B|=|A|^(n-1)

线性代数 设A,B为n阶方阵,B不等于0,且AB=0,

选B因为若|A|不等于0,则A可写成一系列初等矩阵的乘积,AB相当于对B作一系列初等变换,初等变换不改变矩阵的秩,所以AB同B有相同的秩,但是,由于AB=0,所以其秩为0,而B不等于0,所以其秩至少为

设A为n阶方阵,且A=A^2;,则(A-2E)^-1

A=A^2A^2-A=0A^2-2A=-AA(A-2E)=-AA-2E=-E(A-2E)*(-E)=E所以:(A-2E)^-1=-E

设A为n阶方阵(n>1),k为常数,则行列式det(kA)=()

选C,这个时候提取系数的话需要阶数的次方.

设A、B均为n阶方阵,A可逆,且AB=0,则

由A可逆,且AB=0等式两边左乘A^-1得A^-1AB=A^-10即B=0所以(A)正确

设A为n阶方阵,对其正整数k>1,A^k=0,证明:(E-A)^(-1)=E+A+A^2+,+A^(k-1)

由于(E+A+A^2+,+A^(k-1))(E-A)=(E+A+...+,+A^(k-1))-(A+...+,+A^k)=E-A^k=E(注意那个式子的抵消规律)所以命题成立

设A,B,C均为n阶方阵,且ABC=I,则( )

根据逆矩阵的性质AB=I则有BA=I.已知ABC=I所以A(BC)=I,所以(BC)A=I.故(D)正确再问:貌似我书上的单位矩阵都是E莫非这里的单位矩阵是I?再答:是单位矩阵一般有两种记法,E和I.

设A为n阶方阵,且A*A=A,证明R(A)+R(A-E)=n.

因为A*A=A,所以A(A-E)=0;故A-E的每个列向量都是方程Ax=0的解,由于A-E中的列向量未必构成解空间的基,所以R(A)+R(A-E)小于等于n;又由R(A)+R(B)>=R(A+B);立

设A、B为任意n阶方阵,且BA=A+B,则AB=

BA=A+BB=BA-AB=(B-I)A(I=identitymatrix)(B-I)^(-1)*B=(B-I)^(-1)*(B-I)*A(B-I)^(-1)*B=A(B-I)^(-1)*B*B=AB