已知双曲线关于俩坐标轴对称,且与圆x²

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/29 01:10:24
在坐标轴内直线关于点对称怎么求?直线关于直线的对称怎么求?

点关于点的对称问题,是对称问题中最基础最重要的一类,其余几类对称问题均可以化归为点关于点的对称进行求解.熟练掌握和灵活运用中点坐标公式是处理这类问题的关键.点关于直线的对称问题是点关于点的对称问题的延

已知双曲线的中心为坐标原点,焦点在坐标轴上,焦距是10,且经过点P(0,40,求双曲线的方程

焦距2c=10c=5中心为坐标原点,焦点在坐标轴上,又过点(0,4),则焦点在y轴,a=4,a^2=16所以b^2=5^2-4^2=9b=3所以方程为:y^2/16-x^2/9=1

已知双曲线关于原点对称,它的焦点在坐标轴上,焦距为10,且此双曲线过点(3,4根号2)求它的标准方程

如果焦点在y轴上,设方程为y²/a²-x²/b²=1且有焦距为10,即a²+b²=25点(3,4√2),在双曲线上,则有32/a²

已知双曲线的中心在原点 焦点F1F2在坐标轴上 一条渐近线方程为Y=X 且过点(4 -根号10) 求双曲线方程

这个是等轴双曲线设为x²-y²=m代入(4 -根号10)16-10=mm=6方程为x²-y²=6即x²/6-y²/6=1

坐标轴上一个点B(x,y)关于一条直线对称

A(32/3,0),B(0,8)M(0,a)B2(b,0)BB2关于他AM对称所以BB2垂直AM且BB2中点在AM上所以显然三角形ABB2是等腰三角形AM所在直线是底边中线所以AB=AB2A(32/3

已知椭圆的两个焦点都在坐标轴上,且关于原点对称,焦距为6,该椭圆经过点(0,4),求它的标准方程.

焦距是6,所以c=3,可以知道焦点应该是在X轴上,所以由椭圆过点(0,4),知道b=4,所以a=5,所以标准方程为X平方/25+Y平方/16=1楼上的人家楼主都说是椭圆了

已知双曲线x的平方减去三分之(y的平方)等于1存在两点M,N关于直线y=x+m对称,且MN的中点在抛物线y2=18x上,

令M(x1,y1),N(x2,y2)因MN垂直于直线y=x+m令MN所在直线:y=-x+n将MN所在直线方程代入双曲线方程得2x^2+2nx-n^2-3=0则x1+x2=-n(韦达定理)因M、N同在直

已知双曲线关于原点对称,它的焦点在坐标轴上,焦距为10,且此双曲线经过(3,4根号2),求它的标准方程.

先假设焦点在X轴上,∴F1(-5,0),F2(5,0)(关于原点对称),∴C=5;∵经过点(3,4√2),∴(设此点为A点)|AF2|-|AF1|=4√6=2a;∴a=2√6,b^2=c^2-a^2=

已知双曲线关于原点对称,他的焦点在坐标轴上,焦距为10.且此双曲线经过点(3,4根号2)

c^2=25设方程为x^2/a^2-y^2/b^2=1则9/a^2-32/(25-a^2)=1答案再算一下.

已知双曲线3x^-y^=3,且双曲线上存在关于直线L:y=kx+4的对称点,求实数k的取值范围?谢谢你~

设关于L对称的两个双曲线上的点为P(x1,y1),Q(x2,y2)则根据对称的定义,可知:线段PQ被直线L垂直平分由PQ⊥L可知kPQ=-1/kL=-1/k因此可设直线PQ的方程为:y=(-1/k)*

已知双曲线的中心在原点,焦点在坐标轴上,离心率为根号2,且过点(4,-根号10),求双曲线的方程

e=√2,过(4,-√10)c/a=√2-推-c^2=2*a^2推a^2=b^2焦点在y轴上:不成立焦点在x轴上:16/a^2-10/b^2=1;a^2=b^2推a^2=b^2=6方程为:x^2/6-

(1)已知双曲线关于两坐标轴对称,且与圆x2+y2=10相交于点P(3,-1),若此圆过点P的切线与双曲线的一条渐近线平

(1)切点为P(3,-1)的圆x2+y2=10的切线方程是3x-y=10.∵双曲线的一条渐近线与此切线平行,且双曲线关于两坐标轴对称,∴两渐近线方程为3x±y=0.设所求双曲线方程为9x2-y2=λ(

已知双曲线的中心在原点,焦点F1F2在坐标轴上,一条渐近线方程为y=x,且过点(4,-√10)求双曲线方程

由题意设双曲线方程:x^2/a^2-y^2/b^2=1或y^2/a^2-x^2/a^2=1(a>0,b>0)双曲线的渐近线方程为y=±(b/a)x或y=±(a/b)x∵一条渐近线方程为y=x∴a=b∵

已知双曲线的中心在原点,焦点F1、F2在坐标轴上,离心率为根号2,且过点(4,-根号10).(1)求双曲线方程

1)x^2-y^2=6;2)m=根号3或-根号3;若点M在以F1F2为直径的圆上,则MF1垂直于MF2,圆方程为:x^2+y^2=6,点M满足该圆的方程,所以点M在圆上,也证明了MF1垂直MF2;3)

已知双曲线关于两坐标轴对称,且与圆x^2+y^2=10相交于P(3,-1).若此圆过点P的切线【与双曲线的渐近线】平行,

设双曲线的半实轴,半虚轴分别为a,b,过点p的切线在y轴上的截距为d,则由圆心到切线的距离等于半径可得到(1)式,把p点坐标带到双曲线表达式中,得到式(2),又由点p在切线上得到式(3),解由(1),

已知一条抛物线分别经过直线Y=-2X+1与坐标轴的两个交点,且关于直线x=1对称.求这条抛物线的解析式.

设抛物线方程为y=a(x-1)^2+cy=-2x+1令x=0得y=1令y=0得x=1/2即抛物线过(0,1)(1/2,0)两点.x=0y=1x=1/2y=0分别代入y=a(x-1)^2+c1=a(0-

高二圆锥曲线.急.已知双曲线的中心在原点,对称轴为坐标轴,一个焦点F₁(-√5,0),点M位于此双曲线上,且

(1)设方程为x²/a²-y²/b²=1∵M(根号5,1/2)在双曲线上∴5/a²-(1/4)/b²=1又∵a²+b²=

已知双曲线的焦点在坐标轴上,且一个焦点在直线5x-2y+20=0上,两焦点关于原点对称,且e=5/3,求双曲线方程

当焦点在x轴上,当y=0时,解得X=-4,则C=4又e=c/a=5/3,所以a=12/5因为C^2=a^2+b^2所以b^=256/25所以双曲线的方程为x^2/144/25-y^2/256/25=1

已知双曲线C的中心在原点,焦点在X轴上,点P(0,1)与其渐近线的距离为1/2,且点关于渐近线的对称点在双曲线c上;直线

答:(1)设双曲线的方程为x²/a²-y²/b²=1(a>0,b>0),则该双曲线的渐近线是y=bx/a和y=-bx/a.因为点P(0,1)与渐近线y=bx/a