如果n阶方阵A的n个特征值全为0

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/16 14:35:32
设n阶方阵A的元素全为1,则A的n个特征值是?

显然0是它的特征值,并且以0为特征值的基础解系有n-1个,故有0的重数是n-1;又因为每行都有n个1,考虑到(n-1)*1+(1-n)=0所以它还有特征值n.其实对于后面一个特征值,你也可以看看特征值

设n阶方阵A的特征值为0,1,……,n-1,证明:A+E可逆

设A的特征值为λ,则A+E的特征值为λ+1(这儿使用的是公式:f(A)的特征值为f(λ))从而因为A的特征值为0,1,……,n-1,所以A+E的特征值为1,2,……,n,从而|A+E|=n!不等于0,

复数域上的任意n阶方阵a必有n个复特征值 为什么?

因为任意n阶多项式都有n个复数解.这两个结论是搭呢搞笑的.

设A是n阶方阵,2,4,...,2n是A的n个特征值,计算行列式/A-3E/的值

因为2,4,...,2n是A的n个特征值,所以A-3E的特等值为2-3=-1,4-3=1,6-3=3,8-3=5...,2n-3所以|A-3E|=-1X1X3X5X...X(2n-3)=-1X3X5X

设N阶方阵A的特征值为λ,证明:2A+E(E为n阶单位阵)的特征值为2λ+1

设λ对应的A的特征向量为x,则Ax=λx,那么(2A+E)x=2Ax+x=2λx+x=(2λ+1)x,由特征值定义可知2λ+1是2A+E关于特征向量x的特征值

高等代数证明:A、B皆为n阶方阵,如果AB=BA,且A有n个不同的特征值,证明B相似于对角

由A有n个不同的特征值,每个特征值对应的特征空间维数为1,且所有特征向量线性无关.设a为A的特征值,x为对应的非零特征向量,则ABx=BAx=B(Ax)=B(ax)=a(Bx),这说明Bx也是A的对应

设A为N阶方阵,A的m次方=0,m是自然数,则A的特征值为

A的m次方的特征值=A的特征值的m次方,故先求A的m次方的特征值.既然A的m次方=0,0矩阵的特征值当然是0,故A的m次方的特征值为0.故A的特征值=0.

设λ 是n阶方阵A的特征值,证明:Α+2E的特征值为λ+2.

λ是n阶方阵A的特征值,则:Ax=λx,其中x是λ对应的特征向量.考察(A+2E)x(A+2E)x=Ax+2Ex=λx+2x=(λ+2)x所以Α+2E的特征值为λ+2,同时可以看到,对应的特征向量不变

线性代数:设n阶矩阵的元全为1,则A的n个特征值是?

如图,应该很容易理解,就是图不太清楚

设n阶矩阵A的元素全为1,则A的n个特征值是?

显然0是它的特征值,并且以0为特征值的基础解系有n-1个,故有0的重数是n-1;又因为每行都有n个1,考虑到(n-1)*1+(1-n)=0所以它还有特征值n.其实对于后面一个特征值,你也可以看看特征值

证明:若n阶方阵A的特征值全是0,则存在正整数k,使得A^k=0

设a是特征值,对应的特征向量为x,即Ax=ax,左乘A得A^2x=aAx=a^2x,继续递推下去有A^kx=a^kx,即a^k是A^k(=0)的特征值,因为a=0,所以A^k=a^k=0

试证若n阶方阵A满足A^2=A,则A的特征值为0或1

A(A-E)=0,|0E-A|*|1E-A|=0,特征值为0或1.或者设特征值为r,特征向量a,有Aa=ra,A^na=r^na,A^2-A=0,A^2a-Aa=0,r^2-r=0,则r=0或1.

已知A为n阶方阵且A^2=A,求A的全部特征值.

1.设a为矩阵A的特征值,X为对应的非零特征向量.则有AX=aX.aX=AX=A^2X=A(AX)=A(aX)=aAX=a(aX)=a^2X,(a^2-a)X=0,因X为非零向量,所以.0=a^2-a

n阶方阵A有n个不同特征值是A与对角阵相似的什么条件?

充分非必要再问:从前推到后不是必要条件吗?我弄不清什么是充分条件什么是必要条件再答:从前推到后是充分条件,反过来是必要条件

设A是n阶方阵,A有n个不同的特征值是A与对角相似的?条件...

填入:充分若A有n个不同的特征值,则A与对角相似.但逆不成立.

n阶方阵A具有n个不同的特征值是A与对角阵相似的______条件.

由于“n阶方阵A与对角矩阵相似的充要条件A有n个线性无关的特征向量”,而A具有n个不同的特征值,则A一定有n个线性无关的特征向量因此,n阶方阵A具有n个不同的特征值⇒A与对角矩阵相似但反之,不一定成立

设n阶方阵A的n个特征值互异,n阶方阵B与A有相同的特征值,证明:A与B是相似的?

因为A的n个特征值互异所以A可对角化,且A相似于对角矩阵diag(a1,...,an)又因为n阶方阵B与A有相同的特征值所以B也可对角化,且B相似于对角矩阵diag(a1,...,an)由相似的传递性

证明:如果n*n阶方阵A有个n个不同的特征值b1--bn,那么对应每个特征值bi,矩阵A-bi的秩为n-1

设特征值b1--bn对应的特征向量为v1--vn.问题显然是对称的,不失一般性,考虑A-b1.显然,(A-b1)v1=Av1-b1v1=b1v1-b1v1=0,这说明0是A-b1的一个特征值.而(A-

如果n阶方阵A的n个特征值全为0,则A一定是零矩阵吗?为什么呢

幂零矩阵均满足条件,即对于任意n阶方阵A,若存在k使得A^k=0则称A幂零,而一个矩阵幂零的充要条件是其特征值全为零.我们考虑幂零矩阵的Jordan标准型那么任意的形如PJP^(-1),(P可逆)的矩