如图所示,平板小车静止在光滑的水平面上,车的右端固定一个轻质弹簧

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/15 09:02:53
(2014•南昌模拟)如图所示,质量为M的平板小车静止在光滑的水平地面上,小车左端放一个质量为m的木块,小车的右端固定一

①选小车和木块整体为研究对象,由于m受到冲量I之后系统水平方向不受外力作用,系统动量守恒,设系统的末速度为v,则I=mv0=(M+m)v小车的动能为Ek=12Mv2=MI22(M+m)2②根据动量定理

如图所示,质量为M的平板小车静止在光滑的水平地面上,小车左端放-个质量为m的木块,车的右端固定一个轻质弹簧.现给木块-个

(Ⅰ)、对木块,由动量定理得:I=mv0,对木块与小车组成的系统动量守恒,以木块的初速度方向为正方向,由动量守恒定律得:mv0=(M+m)v,小车的动能:EK=12Mv2,解得:EK=MI22(M+m

如图所示,质量 M 为4kg的平板小车静止在光滑的水平面上,小车左端放一质量为lkg的木块, 车的右端固定一个轻质弹簧

(1)2m/s;(2)2J;(3)20J(1)由题意水平地面光滑,可知小车和木块组成的系统在水平方向动量守恒,当弹簧被压缩到最短时,二者速度相等,设木块获得的初速度为v0,由动量定理得l=mv0&nb

如图所示,质量M为4kg的平板小车静止在光滑的水平面上,小车左端放一质量为lkg的木块,车的右端固定一个轻质弹簧.现在瞬

(1)木块与小车组成的系统动量守恒,以小车的初速度方向为正方向,当弹簧被压缩到最短时,木块和小车速度相等,由动量守恒定律得:mv0=(M+m)v,代入数据解得:v=2m/s;(2)木块与弹簧碰后相对小

如图所示,质量为m=1kg的滑块,以vo=5m/s的水平初速度滑上静止在光滑水平面上的平板小车,若小车质量M=4kg,平

滑块受到向左的摩擦力,μmg=ma1,则a1=μg,向左小车水平方向受到向右的摩擦力,μmg=Ma2,则a2=0.25μg,向右注意此处我们以小车为参考系,则滑块的相对初速度为v0=5m/s,相对加速

如图所示,有一长度x=1m、质量M=10kg的平板小车,静止在光滑的水平面上,在小车一端放置一质量m=4kg的小物块,物

小车和物块的运动情况如图所示,在物块运动到小车右端的过程中,小车发生的位移为x1,物块发生的位移为x2,取向右为正,以小车为研究对象,由牛顿第二定律得:μmg=Ma1…①由匀变速运动的公式得:x1=1

如图所示,有一长度x=1m、质量M=10kg的平板小车,静止在光滑的水平面上,

小车静止在光滑水平面上,不受地面的摩擦力,只受小物块给小车的摩擦力,所以F1=μmg∵f=μmg=10N∴a(车)=f/M=1m/s∴x(车)=1/2*a*(t平方)=2m∴x(物)=x(车)+x=3

如图所示,有一长度x=1m、质量M=10kg的平板小车,静止在光滑的水平面上,在小车一端放置一质量m=4kg的小物块,物

变化参考系的方法实在巧妙,但建议不要经常使用,牛顿运动定律常常以惯性系而言,对于非惯性系常常却又涉及另一些知识.首先呢,变换参考系,以B为参考系那么就假设他不动,A就具有一部分B速度,则在B参考系中A

木块A以V=5m/s的水平初速度滑上一辆静止在光滑水平面的平板小车B上,平板小车足够长 如图所示,已知A的质量M

1)设木块A与小车B相对静止时的速度为V'M1V=(M1+M2)V'V'=[M1/(M1+M2)]V=[0.4/(0.4+1.6)]*5=1m/sA与B之间的摩擦力f=uM1*g=0.2*0.4*10

如图所示,质量m=2kg的物体,以水平速度v0=5m/s滑上静止在光滑水平面上的平板小车,小车质量M=8kg,物体与小车

(1)设物体相对小车静止时的速度为v,取物体初速方向为正方向,对物体和小车组成的系统,由动量守恒可得:m v0=(M+m)v即:v=mv0M+m代入数据得:v=1m/s(2)令物体在小车上滑

如图所示,长L=1.3m,质量M=5.0kg的平板小车A静止在光滑的水平面上,小车左端放有质量m=1.0kg的木块B(可

(1)小车A受力如图所示,重力Mg、水平面的支持力FN1,木块的压力FN2、水平向右的滑动摩擦力F1.设小车的加速度为a1根据牛顿第二定律得 F1=Ma1,又F1=μFN2木块B的受力如图所

质量为M的平板小车C静止在光滑的水平面上

AB选项对.分析:在车表面光滑时,车不受摩擦力,仍保持静止.因为A和B的质量相等,且V1>V2,所以它们碰撞后,B物体的碰后速度方向必是向右,所以最终它要从车的右端滑出.---选项B对.又如果A和B物

关于动量守恒的!如图所示,一个m=2kg的物体,以水平速度V0=5m/s滑上静止在光滑水平面上的平板小车,小车的质量M=

1:当二者相对静止时,物体在小车滑行距离最长.此时二者速度相等设为v1则mv0=(m+M)v1得v1=1m/s2:物体受到的摩擦力f=umg,设加速度为a则ma=umg,v0-at=v1得t=(v0-

如图所示,长为2L的板面光滑且不导电的平板小车C放在光滑水平面上,车的右端有档板,车的质量m C =4m.今在静止的平板

(1)由动能定理,得到qEL=12mv20,解得E=mv202qL,因而电场力向右且带正电,电场方向向右即匀强电场的场强大小为mv202qL,方向水平向右.(2判断A第二次与B相碰是在BC碰后还是碰前

平板小车质量M=8kg,平板长度l=1m,静止在光滑的水平地板上.

在整个运动过程中,滑块和小车组成的系统水平方向没有受到外力的作用,设小车的速度为v动量守恒:v0*m=v1m+Mvv=(v0-v1)m/Mv=3*4/8v=1.5(m/s)再问:没学动量守恒,只学了动

如图所示,质量为m=1kg的滑块,以v0=5m/s的水平初速度滑上静止在光滑水平面上的平板小车,小车质量M=4kg,小车

①滑块与小车组成的系统动量守恒,以滑块的初速度方向为正方向,由动量守恒定律得:mv0=(m+M)v1,解得:v1=1m/s;②小车与墙壁碰撞后速度大小为1m/s,方向向左,小车与滑块组成的系统动量守恒

如图所示,一平板小车静止在光滑的水平地面上,车上固定着半径为R=0.7m的四分之一竖直光滑圆弧轨道,小车与圆弧轨道的总质

(1)当v0=3m/s时,滑块在B处相对小车静止时的共同速度为v1,由动量守恒定律:mv0=(M+m)v1…①对滑块,由动能定理:-μmg(s+L)=12mv21-12mv20…②对小车,由动能定理: