为什么说f(x)在区间[a,b]上有界未必可积

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/29 19:14:08
f(x)在区间【a,b】是增函数,则f(x)在区间【a,b】的导数是大于等于零吗,为什么?

我记得反过去问是都一定要大于零的.正着问好像可以大于等于零.

在区间[a,b]上,若f(x)>0,f'(x)>0,f''(x)>0,则(b-a)f(a)

1.证明任取(a,b)上一点x,f(x)<[(x-a)f(a)+(b-x)f(b)]/(b-a):首先由Lagrange定理知f(x)-f(a)=(x-a)f'(x1),x1为(a,x)

设函数f(x)在开区间(a,b)内有f导(x)

f'(x)0说明函数是图形下凹所以答案选C

已知函数f(x)在区间[a,b]上具有单调性,且f(a)

函数f(x)在区间[a,b]上具有单调性,且f(a)0时,有0个根;(2)当f(a)*f(b)

如果函数f(x)在(a,b)内可导,且在a点的右导数及在b点的左导数都存在,就说f(x)在闭区间【a,b】

哪里有问题呢?a点的右导数存在,b点的左导数存在的情况下,就把断电也包括在可导里面.这个就是个定义.不必过分的追究原因

f(x)>0 x∈[a,b] 为什么推不出 f(x)对x 在区间[a,b]上的定积分大于0?

因为一些函数的定积分是0,区间取内函数取值为无穷小,甚至可以在无穷小的子区间区间不取无穷小...而函数可以是无穷小而不能说是0,而普通定积分的定义是个极限是个数,极限哪有无穷小的,无穷小的极限就是0.

已知奇函数f(x)在区间[-b,-a] (b>a>0)上是减函数,且f(x)>0,试问函数y=|f(x)|在区间[a,b

y=f(x)在区间[a,b]上是增函数证明:已知f(x)在区间[-b,-a](b>a>0)上是减函数所以f(x)在区间[-b,-a]上有,f(-b)-f(-a)>0因为f(x)是奇函数所以-f(b)+

若二次函数f(x)=-x^2+2x在区间[a,b](a

∵定义域是[a,b]值域是[a,b]所以可以想成f(t)=-t^2+2t=t此时t可以为a也可以为b然后可以得到结论a=0,b=1或者f(x)的最大值为(0-4)/(-4)=1画个图像,因为a

设f(x)在区间[a,b]上连续,在(a,b)可导,

/>构造辅助函数:F(x)=xf(x),则:F(x)在[a,b]连续,在(a,b)可导,从而F(x)满足拉格朗日中值定理,则:在(a,b)内至少存在一点ξ,使得:F(b)-F(a)b-a=F′(ξ),

证明题:设f(x)在闭区间[a,b]上连续在开区间(a,b)内可导……

确定没抄错题?cotb(sin£1)^2f'(£2)?看起来不是很协调啊,如果你确定没抄错,我就试试看.不过我希望楼主能提供一份word公式编辑器版本的式子,这个样子的感觉有些不靠谱···再问:已经上

什么是函数可积性?为什么函数f(X)在(a,b)区间内连续,那么它就具有可积性呢?

因为积分的数学意思就是求面积,因为f(x)在区间(a,b)连续,故可以求面积,所以可积.其实,连续是可积的充分非必要条件,如果f(x)在(a,b)上不连续,而是分断连续的,即有有限个间断点,f(x)仍

设函数f ( x)在有限区间( a,b)内可导,

由题目的条件,f(x)实际上就是[a,b]上的连续函数,也就是说,题目的条件保证了Rolle定理的条件是满足的.更准确的说法:这个命题实际上就是Rolle定理,不能称为Rolle定理的推广.它与Rol

f(x)在闭区间a,b 上连续 则F(X)=∫a到x (x-t)f(t)dt在开区间a,b内

你题目是否抄错了?应该有f(x)在[a,b]上连续,且在(a,b)上可导,才能选D的.F(x)是带有f(x)的复合函数的积分,F'(x)=(x-t)f(x)-C,其中C为常数.F(x)一定连续且可导,

设函数f(x)在区间[a,b]上连续,在区间(a,b)内有二阶导数,如果f(a)=f(b)且存在c

这个很显然分别在(a,c)和(c,b)上用Rolle定理得存在x1,x2满足a再问:谢谢。能再具体些吗再答:够具体了,再搞不懂就把Rolle定理的式子自己写一下,不要太偷懒再问:谢谢我能在问你一个问题

设函数f(x)在区间(a,b)内二阶可导,且f''(x)≥0

当x≥x0吧f(x)-f(x0)=f'(ζ1)(x-x0)其中ζ1∈(x0,x)f''(x)≥0可知f'(x)递增,即f'(ζ)≥f'(x0)即f(x)≥f(x0)+f'(x0)(x-x0)当x

设f(X)在区间(a,b)内二阶可导,且f''(x)≥0

不知道你想用那种方法证明?要是用泰勒级数展开的话,结论很明显!f(x)=f(x0)+f'(x0)(x-x0)+.+拉格朗日余项,因为f''(x)≥0,所以第三项一定大于零!所以结论成立!

设函数f(x)在区间(a,b)内恒满足,|f(x)-f(y)|

|[f(x)-f(y)]/(x-y)|≤2|x-y|;令x趋向于y,|f'(x)|≤2*0;|f'(x)|≤0;所以f'(x)=0;所以f(x)是常量函数