作业帮 > 数学 > 作业

△ABC中,角A、B、C所对的边a,b,c成等差数列,且最大角是最小角的2倍,则 cosA+cosC=____

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/06/03 02:42:07
△ABC中,角A、B、C所对的边a,b,c成等差数列,且最大角是最小角的2倍,则 cosA+cosC=______.
△ABC中,角A、B、C所对的边a,b,c成等差数列,∴2b=a+c.
设C为最大角,则A为最小角,再由最大角是最小角的2倍,可得C=2A,且 0<A<
π
3.
再由正弦定理可得 2sinB=sinA+sin2A,∴2sin(π-3A)=sinA+sin2A,即2sin3A=sinA+sin2A,
2(3sinA-4sin3A)=sinA+2sinAcosA,化简可得 2cosA=5-8sin2A=5-8(1-cos2A ),
解得cosA=
3
4,cosA=-
1
2(舍去).
则 cosA+cosC=cosA+cos2A=cosA+2cos2A-1=
3
4+2×
9
16-1=
7
8,
故答案为
7
8.