证明实数域上一切有逆的n*n 矩阵对于矩阵乘法来说可以作成一个群

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/10 23:46:54
实数域上的2n阶矩阵A,B可交换,那么它们有公共特征向量吗?为什么?

设任取的x为A的特征值a对应的特征向量.Ax=axABx=BAx=aBx故Bx也是A的特征值a对应的特征向量.也就是说明,A的特征值a对应的不变子空间也是B的一个不变子空间,故他们有相同的特征向量.再

设A为实数域上n×s矩阵,证明对任意的n×t实矩阵B,存在s×t矩阵C,使得A'AC=A'B

因为A'A的列向量可由A'的列向量线性表示而r(A'A)=r(A')所以A'A的列向量与A'的列向量组等价又因为A'B的列向量可由A'的列向量线性表示所以A'B的列向量可由A'A的列向量线性表示所以存

设A,B都是实数域R上的n×n矩阵,证明:AB,BA的特征多项式相等

就是要证明|λE-AB|=|λE-BA|.考虑分块矩阵P=E0-AE与分块矩阵Q=λEBλAλE可算得PQ=λEB0λE-AB有λ^n·|λE-AB|=|λE|·|λE-AB|=|PQ|=|P|·|Q

方程:mx-(m+n)x+n=0 有两个相等的实数根.证明:n+2(m-2m)n+m=0 如果n是实数,确定m的取值范围

∵m²x²-(m+n)x+n=0有两个相等实根∴⊿=(m+n)²-4m²n=0∴n²+2(m-2m²)n+m²=0∵n为实数∴[2

已知m>n>0,证明:2x^2+(3m+n)x+mn=0有2个不相等的实数根.

判别式=b^-4ac=(3m+n)^2-4*2*mn=9m^2+6mn+n^2-8nm=9m^2-2mn+n^2=8m^2+(m-n)^2必大于0,所以有两个.

数列an=3^n - 2^n 证明:对一切正整数n 有1/a1 + 1/a2 +…+ 1/an

令Tn为{1/an}的前n项和,则T1=1/(3-2)=14,即3^2>2^3,设f(x)=3^x-2^(x+1)(x>2),则f'(x)>0,所以f(x)>f(2)>0,故3^n>2^(n+1),即

函数f(x)的定义域为R,若对一切实数m.n都有f(m-n)=f(m)+(n-2m-1)n成立.且f(0)=1,求f(x

令m=n=xso,f(m-n)=f(m)+(n-2m-1)n即是f(0)=f(x)+x(x-2x-1)=f(x)-x2-x=1so,f(x)=x2+x+1

证明:实数域上一切有逆得n*n矩阵对于矩阵乘法来说,作成一个群

我们令所有可逆n*n矩阵组成的集合为M,我们知道,M是非空的且矩阵乘法是一个二元运算.若M在矩阵乘法下成一个群,则因满足群的四个性质,现一一证明.(1)单位矩阵I是可逆的,是M中元素,且对于任意矩阵A

实数域上的n阶矩阵A一定有n个特征向量

错,n阶矩阵A的特征多项式在实数域上不一定有n个根.

证明实数域上的行列式为1的n阶方阵全体关于矩阵的乘法是n阶可逆矩阵全体关于矩阵乘法所成群的正规子群

设实数域上的行列式为1的n阶方阵全体构成的集合为H,n阶可逆矩阵全体关于矩阵乘法所成群为,则对任意A,B∈H,|AB|=|A||B|=1,|A^-1|=|A|^-1=1,即AB∈H,A^-1∈H,所以

设A为实数域R上的n级正定矩阵.证明:A的元素中绝对值最大的必在主对角线上

证明:反证法.假设绝对值最大的不在主对角线上,而是在第i行,第j列,不妨设i

求用数学归纳法证明:对于大于2的一切正整数n,下列不等式都成立

首先n=1容易验证成立假设n=k成立n=k+1时有(1+2+3+…+k)(1+1/2+1/3+…+1/k)+(k+1)*(1+1/2+1/3+…+1/k)+(1+2+3+…+k)*(1/(k+1)(1

函数f(x)的定义域为R,若对一切实数m.n都有f(m-n)=f(m)+(n-2m-1)n成立.

在上式中,令m=0,f(-n)=f(0)+(n-1)n=n^2-n所以f(x)=x^2+x

已知m>n>0,证明方程:2乘以x的平方+(3m+n)x+mn=0有两个不相等的实数根

就是证明b平方-4ac>0化简以下可以得到2m^2+(m-n)^2>0这是恒等式所以m>n>0都不需要就可以得到2乘以x的平方+(3m+n)x+mn=0有两个不相等的实数根

设有实数域上n阶方阵A,A的顺序主子式全为正的,而且非对角元全为负的.证明:逆矩阵A^-1的每个元素全为正的.

对A做LU分解,用归纳法容易证明L和U具有同样的符号结构(这种矩阵叫M-矩阵),即L和U的对角元为正数、非对角元为负数(非零的部分)、顺序主子式大于零.于是L^{-1}和U^{-1}都是非零元皆为正数

证明:对大于2的一切正整数n,下列不等式成立(1+2+3+…+n)(1+ 1/2 + 1/3 +…+ 1/n) ≥ n^

证明:设:f(n)=(1+2+3+…+n)(1+1/2+1/3+…+1/n)-n^2-n+1f(3)=(1+2+3)(1+1/2+1/3)-9-3+1=6*11/6-9-3+1=0f(n+1)-f(n

用数学归纳法证明:对于一切n∈N*,都有(1

证明:(1)当n=1时,左边=12+1=2,右边=1×2×33=2,所以当n=1时,命题成立;         

线性空间的证明检验集合(n阶实对称矩阵的全体,关于矩阵的加法和实数与矩阵的数乘)是否构成实数域R上的线性空间

反对称矩阵主对角线上元全是0,aji=-aij所以反对称矩阵由其上三角部分唯一确定,故其维数为:(n-1)+(n-2)+...+1=n(n-1)/2令Eij为aij=1,aji=-1,其余元素为0的矩

归纳证明对大于2的一切正整数n,都有(1+2+…+n)(1+1/2+…+1/n)>n^2+n-1

n=3,左边等于=右边=11;假设n成立,n+1时,左边=(1+2+...+n)(1+1/2+...+1/n)+(n+1)(1+1/2+...+1/(n+1))+(1+2+...+n)(1/(n+1)