设函数f在R上连续证明对于任何实数x有0到x u到2u f(t)dt二重积分

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/15 10:20:01
设f(x)是定义在R上的函数,且对于任意x、y∈R,恒有f(x+y)=f(x)f(y),且x>0时,f(x)>1.证明:

由f(x+y)=f(x)f(y)可得到f(x+1)=f(x)f(1)又f(1)>1即f(x+1)>f(x)*1即得到f(x+1)-f(x)>0

一道微积分的证明题.设函数f(x)在R上连续,且limf(x)=A(有限值)(x趋向无穷).证明:f(x)在R上必有界.

limf(x)=A(有限值)(x趋向无穷).对ε=1,存在X>0,当|x|>X时.有|f(x)-A|A-1

设函数f(x)在R上连续,且当X趋向于无穷大时,limf(x)=A.证明:f(x)在R上必有界.

因为X趋向于无穷大时,limf(x)=A存在一个M1,则存在一个X>0,当|x|>X时,|f(x)|0,当x属于〔-X,X〕时,|f(x)|

高数证明题:设函数f(x)在区间[0,1]上连续,证明

作变量替换t=π-x,代入可得原式=∫(π-t)f(sinx)d(-t)(积分限是从π到0),化简一下得∫(从π到0)t*f(sint)dt+π∫(从0到π)f(sint)dt,第一项与原式相差一下负

设f(x)是定义在R上的函数,且对于任意x,y∈R,恒有f(x+y)=f(x)f(y),且当x>0时,f(x)>1.证明

f(x+y)=f(x)f(y)forxf(x)(-x>0,=>f(-x)>1)puty=xf(2x)={f(x)}^2>0ief(2x)>0forallxf(x)>0forallxx=>y=x+a(a

设f(x)是定义在R上的函数,且对于任意x.y∈R恒有f(x+y)=f(x)f(y),且x>0时,f(x)>1.证明

f(0)=f(x)+f(-x),因为x>0时,f(x)>1,f(0)=1,根据反函数图像易知,0

设f(x)在R上有定义,在x=0点连续,且f(x/a)=f(x),其中a为小于1的常数,证明f(x)为常数函数.

由f(x/a)=f(x)可得:f(x/a)=f(x)=f(ax)=f(a^2*x)=f(a^3*x)=.=f(a^n*x)因为a为小于1的常数,所以a^n在n->∞时为0即f(x)=f(a^n*x)=

设函数y=f(x)定义在R上,对于任何实数m.n,恒有f(m+n)=f(m)*f(n),且当x大于零时,0<f(x)<1

(1)证明:令n=0,m>0时,则f(m)=f(m)f(0),且00,令y>0,则有0<f(y)<1f(x+y)=f(x)*f(y)y,所以f(x)在R上是减函数(3)f(-x^2+6x-1)*f(y

设f(x)在[0,1]上是单调递减函数 试证明对于任何q属于[0,1]都有不等式∫q/0 f(x)dx≥q∫1/0f(x

∫q/0f(x)dx=∫1/0f(qx)dqx=q∫1/0f(qx)dxf(x)在[0,1]上是单调递减函数,所以对任意q属于[0,1],0≤qx≤x≤1有f(qx)≥f(x)∫1/0f(qx)dx≥

设定义在R上的函数f在0、1两点连续,且对任何x属于R有f(x^2)=f(x).证明f为常量函数.

证明:因为f(-x)=f(x)=f(x^2),所以f为偶函数,只需证明x>=0时f(x)为常数即可设x>0且不为1,则f(x)=f(根号x)=f(x^(1/4))=……=f(x^(1/2^n))当n充

设函数f 在 [a,b]上连续,证明:对任一,0

若f(a)=f(b),令ξ=a,就得证f(a)≠f(b),不妨f(a)

证明:若函数f(x)在R上连续,对于任意x,y∈R,有|f(x)-f(y)|≤k|x-y|(0<k<1),则f(x)在R

容易由条件知道F(x)=kx-f(x)是R上的递增函数,且有|f(x)-f(0)|0时,于是g(x)=x-f(x)满足g(x)=x-f(x)+f(0)-f(0)=(1-k)x+【kx-(f(x)-f(

高数题求解.设函数f(x)在0到1上闭区间连续,证明

sin(π-t)=sintx=π-tdx=-dtx=0t=πx=πt=0∫(0~π)xf(sinx)dx=-∫(π~0)[π-t]f(sint)dt=∫(0~π)(π-t)f(sint)dt=∫(0~

设 f(x) 是定义在R上的函数,且对于任意x、y ∈R ,恒有 f(x+y)=f(x) f(y), 且x1. 证明:

(1)f(0)=1当x>0时-x1f(x-x)=f(x)*f(-x)f(x)=1/f(-x)因为f(-x)>1所以当x>0时000

设函数f(x)在[a,b]上连续,且f(a)=f(b),证明:对于任意的正整数n,存在一个区间[

本题就是要证明对任意n,存在ξ,使得f[ξ+(b-a)/n]=f(ξ),于是问题转化为证明函数F(x)=f[x+(b-a)/n]-f(x)存在零点.对区间[a.b]插入n-1个等分点,记分点为x1,x

设函数f(x)是定义在R上的增函数,且f(x)0,对于任何X1,X2属于R,都有f(x1+x2)=f(x1)*(x2)

(1)对于任意的x∈R,x=x/2+x/2于是,f(x)=f(x/2+x/2)=f²(x/2)>0(因为f(x)≠0)(2)f(x1)=f(x1-x2+x2)=f(x1-x2)*f(x2)即

设a是实数.f(x)=a-[2/(2^x+1)] (x∈R).试证明:对于任意a,f(x)在R上为增函数

假设m>n,m、n∈Rf(m)-f(n)={a-[2/(2^m+1)]}-{a-[2/(2^n+1)]}=-2[1/(2^m+1)-1/(2^n+1)]=-2{(2^n-2^m)/[(2^m+1)(2

设函数f(x)是定义在R上的函数,且对于任意x,y∈R.

哎拿去参考基本一样如果是想直接抄的看楼下..