设A是实数域上的矩阵

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/13 16:14:28
设A是n阶实对称矩阵,证明:(1)A的特征值全是实数;(2)若A为正定矩阵,则A^2也是正定矩阵

(1)设λ是A在复数域内的一个特征值,X是属于λ的特征向量(未必是实向量),即有AX=λX.用B*表示B的复共轭的转置,由A是实对称矩阵,有A*=A.考虑1×1矩阵X*AX,可知(X*AX)*=X*A

设A为实数域上n×s矩阵,证明对任意的n×t实矩阵B,存在s×t矩阵C,使得A'AC=A'B

因为A'A的列向量可由A'的列向量线性表示而r(A'A)=r(A')所以A'A的列向量与A'的列向量组等价又因为A'B的列向量可由A'的列向量线性表示所以A'B的列向量可由A'A的列向量线性表示所以存

设A,B都是实数域R上的n×n矩阵,证明:AB,BA的特征多项式相等

就是要证明|λE-AB|=|λE-BA|.考虑分块矩阵P=E0-AE与分块矩阵Q=λEBλAλE可算得PQ=λEB0λE-AB有λ^n·|λE-AB|=|λE|·|λE-AB|=|PQ|=|P|·|Q

设A是实数域上的矩阵,证明:若A^T A=0,则A=0

对A做行分块,设A=(a1,a2,……,an)^T则A^TA=a1^2+a2^2+……+an^2=0从而a1=a2=……=an=0进而A=0.或者这样看A'A为一半正定矩阵,若其等于0,必有A=0

线性代数 设A是3阶非零实数矩阵,其元素a(ij)与|A|的代数余子式A(ij)相等,求|A|

a(ij)=A(ij)==>A^T=A*两边取行列式==>|A|=|A*|=|A|^2==>|A|=0或1又因为A是3阶非0矩阵,不让设a(11)不等于0,那么|A|=a(11)A11+a12A12+

设A为实矩阵,证明A^TA的特征值都是非零负实数.

对任一非零实列向量x,总有x^T(A^TA)x=(Ax)^T(Ax)>=0而实对称矩阵的特征值都是实数所以实对称矩阵A^TA的特征值都是非负实数

如何证明全体上三角矩阵,对于矩阵的加法与标量乘法在实数域是线性空间

V={A|A上三角矩阵}由于矩阵的加法与标量乘法性质,所以对线性运算性质是不证自明的.只要证明:对加法与标量乘法的封闭性1)A,B∈V,上三角矩阵+上三角矩阵仍然是上三角矩阵,故A+B∈V2)A∈V,

设A施n阶实数矩阵,下列不一定正确的 是

a)A的特征值时det(A-xE)=0的根,这是一个n阶方程,显然不保证肯定全部时实根b)特例0100c)成立d)b)中的矩阵就是一个反例所以只有c肯定对,其他都不对

实数域上的n阶矩阵A一定有n个特征向量

错,n阶矩阵A的特征多项式在实数域上不一定有n个根.

设A为实数域上的n阶对称矩阵,且满足A2=0,求证:A=0

两侧的括号省略设A=abbca,bc均为实数.A^2=AA=ababbc乘bc按定义:AA=a^2+b^2ab+bcab+bcb^2+c^2由已知:A^2=0,即各元素均为0.得:a^2+b^2=0,

设A是一个n阶上三角矩阵,并且主对角线上的元素不为0,如何证明它的逆矩阵也是上三角形矩阵?

证:用伴随矩阵的方法由A可逆,A^-1=A*/|A|记A=(aij),A*=(Aij)^T其中Aij=(-1)^Mij是aij的代数余子式,Mij是aij是余子式.当ii.2.某行乘非零常数在这两类变

设n阶非零实数矩阵A满足A的伴随矩阵等于A的转置,试证A的行列式等于一,且A为正交矩阵

首先,当n>1,关于伴随矩阵的秩,有如下结果:若r(A)=n,则r(A*)=n;若r(A)=n-1,则r(A*)=1;若r(A)证明:当r(A)=n,有A可逆,|A|≠0.于是由A*A=|A|·E可得

设A为实数域R上的n级正定矩阵.证明:A的元素中绝对值最大的必在主对角线上

证明:反证法.假设绝对值最大的不在主对角线上,而是在第i行,第j列,不妨设i

设A为正定矩阵,则下列矩阵不一定为正定矩阵的是

正定矩阵的特征值ai>0A^T,A+E,A^-1,A-2E的特征值分别为ai,ai+1,1/ai,ai-2所以只有A-2E的特征值可能为负值所以A-2E不一定正定

证明:如果A是实数域上的一个对称矩阵,且满足A*A=0,则A=0

设A为n阶方阵,令A*A=B,由于对称阵,因此有对任意m属于[1,n]Bmm=Am1^2+Am2^2+...+Amn^2=0因此Am1=Am2=...Amn=0由m的任意性可以知道A的每个元素为0,即

设A是n阶可逆实数矩阵,证明A(AT)的特征根大于0.AT是A的转置矩阵

就是证明AA^T是正定阵即可.因为对任意的n维列向量x,有x^T(AA^T)x=(A^Tx)^T(A^Tx)>=0,且等号成立的充要条件是A^Tx=0,而A可逆,即A^T可逆,因此等号成立的充要条件是

设A是实对称矩阵,证明只要实数t足够大,tE+A一定是正定矩阵

因为A实对称,存在正交矩阵P,使得P'AP为对角阵,记为C,其中P'P=E.所以P'(tE+A)P=tE+C,注意这里tE+C是对角阵,只要t足够大,一定可以使对角线上元素均是正数.总结一下,存在可逆

设A是实数域上n级可逆矩阵,证明:A可唯一分解成A=TB.其中T是正交阵,B是主对角元都为正的上三角矩阵.

考虑到R^n的任何一组基可以标准正交化即可得到存在性(考虑两组基的过渡阵).唯一性是显然的,证明如下:设T_1B_1=T_2B_2,则{T_2}^{-1}T_1=B_2{B_1}^{-1}.注意到1.