设A为n阶方阵,若A∧2=E,证明A的特征值只能是1或0

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/11 19:41:29
设A为N阶方阵,满足A^K=0,证明E-A可逆,并且(E-A)^-1=E+A+A^2+...+A^K-1

(E-A)(E+A+A^2+...+A^K-1)=E+A+A^2+...+A^K-1-(A+A^2+...+A^K)=E-A^k=E所以:E-A可逆,并且(E-A)^-1=E+A+A^2+...+A^

设A是n阶方阵,且(A+E)^2=0,证明A可逆.

由(A+E)^2=0得A^2+2A+E=0A(-A-2E)=E所以A可逆且逆矩阵为-A-2E

设n阶实方阵A=A^2,E为n阶单位矩阵,证明:R(A)+R(A-E)=n

因为A=A^2所以A(A-E)=0\x0d所以r(A)+r(A-E)≤n.\x0d参:\x0d\x0d又n=r(E)=r(A+E-A)≤r(A)+r(E-A)=r(A)+r(A-E)\x0d参:\x0

设方阵 A=E-2aaT,其中 E 为 n 阶单位矩阵,a 为 n 维单位列向量,证明:A为对称的正交矩阵.

直接验证.a是单位列向量,所以aTa=1AT=ET-2(aaT)T=E-2aaT所以是对称阵.ATA=(E-2aaT)(E-2aaT)=E-2aaT-2aaT+4aaTaaT=E这说明A是正交阵.

设n阶方阵A满足A*A-A-2E=0,证明A和E-A可逆

证明:因为A*A-A-2E=0,所以A(A-E)=2E或A(E-A)=-2E..所以A和E-A可逆,且A^-1=(1/2)(A-E),(E-A)^-1=(-1/2)A.满意请采纳^_^

线性代数 设n阶方阵A满足A^2=E,|A+E |≠0,证明A=E

A^2=E==>A^2-E=0==>(A+E)(A-E)=O|A+E|≠0所以A+E可逆那么方程(A+E)x=0只有0解也就是说A-E的每一列都是0,所以A-E=O

线性代数中秩的证明设A为n阶方阵,且A^2=A,若R(A)=r,证明:R(A-E)=n-r..其中E为n阶单位阵

由A^2=A,得A^2-A=0,(A-E)A=0.两n阶矩阵乘积为零矩阵,则两矩阵秩之和不大于n,故由(A-E)A=0得,R(A-E)+R(A)≤n.两矩阵之和的秩不小于两矩阵秩之和,故由(E-A)+

设A,B为n阶方阵,E为n阶单位矩阵,证明:若A+B=AB,则A-E可逆.

A+B=AB,即:AB-A-B+E=E(A-E)(B-E)=E所以A-E可逆,它的逆就是B-E

设A为n阶方阵,AA=A ,证明R(A)+R(A-E)=n

(1)A^2=A,所以A(A-E)=0所以r(A)+r(A-E)=r(A+E-A)=r(E)=n所以r(A)+r(A-E)=n再问:R(A)+R(B)>=R(A+B)这怎么得来的?再答:A的所有列向量

设A为n阶方阵,E为n阶单位矩阵,证明R(A+E)+R(A-E)》n,

证明:设A,B为同阶方阵,a1,a2...ar是A的极大线性无关向量组,则:R(A)=r,同理,设b1,b2,..bs为B的极大线性无关向量组,则:R(B)=s而A+B与A和B为同阶方阵,其极大线性无

设A为N阶方阵,且A-E可逆,A^2+2A-4E=0,求A+3E的逆方阵

将A^2+2A-4E=0变化为A^2+2A-3E=E,即(A+3E)*(A-E)=E,因为(A-E)可逆,所以A+3E的逆方阵为(A-E)^-1

设n阶方阵A满足A^2=E,证明r(A-E)=n-r(A+E)

证:由已知,A^2=E,(A+E)(A-E)=0所以r(A+E)+r(A-E)

设A为n阶方阵,证明:(1)若A^2=A,则r(A)+r(A-E)=n (2)若A^2=E,则r(A+E)+r(A-E)

这里边用到两个结论:r(A+B)=r(A+E-A)=r(E)=n.中间等号必须成立,因此r(A)+r(A-E)=n.2、(A+E)(A-E)=0,因此n>=r(A+E)+r(A-E)=r(A+E)+r

设A和B为n阶方阵,A^2B+AB^2=E 证明A+B可逆

A^2B+AB^2=E即AAB+ABB=E所以A(A+B)B=E所以A可逆,B可逆所以A(A+B)=B^-1A+B=A^-1B^-1所以A+B可逆且(A+B)^-1=BA

设A为n阶方阵,且A=A^2;,则(A-2E)^-1

A=A^2A^2-A=0A^2-2A=-AA(A-2E)=-AA-2E=-E(A-2E)*(-E)=E所以:(A-2E)^-1=-E

设A为n阶方阵,对其正整数k>1,A^k=0,证明:(E-A)^(-1)=E+A+A^2+,+A^(k-1)

由于(E+A+A^2+,+A^(k-1))(E-A)=(E+A+...+,+A^(k-1))-(A+...+,+A^k)=E-A^k=E(注意那个式子的抵消规律)所以命题成立

设A为n阶方阵,且A*A=A,证明R(A)+R(A-E)=n.

因为A*A=A,所以A(A-E)=0;故A-E的每个列向量都是方程Ax=0的解,由于A-E中的列向量未必构成解空间的基,所以R(A)+R(A-E)小于等于n;又由R(A)+R(B)>=R(A+B);立

设n方阵A满足A^2=A,E为n阶单位矩阵,证明R(A)+R(A-E)=n

因为A*A=A,所以A(A-E)=0;故A-E的每个列向量都是方程Ax=0的解,由于A-E中的列向量未必构成解空间的基,所以R(A)+R(A-E)小于等于n;又由R(A)+R(B)>=R(A+B);立