用根值法判定敛散性 ∑(n 1 an-1])^n急求

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/18 09:08:30
判定级数ntan (π\2∧n+1)的敛散性

答:limn->∞u(n+1)/u(n)=limn->∞[(n+1)tan(π/2^(n+2))]/[ntan(π/2^(n+1))]又当t->0时,tant~t=limn->∞[(n+1)(π/2^

高数题:用比值判别法判定级数 n=1∑∞n/3n的敛散性?急,

lim(n->∞)u(n+1)/un=lim(n->∞)[(n+1)/3^(n+1)]/[n/3^n]=1/3

利用比较审敛法判定级数[∞ ∑ n=1] 1 / [(2n+1)]的敛散性

[∞∑n=1]1/[(2n+1)]>[∞∑n=1]1/[(2n+2)]=(1/2)[∞∑n=1]1/[(n+)]=(1/2)[∞∑n=2](1/n)后者为调和级数(是p=1时得p级数),发散,故原级数

利用比值审敛法判定级数[∞ ∑ n=1] 1 / [(2n+1)!]的敛散性

后项与前项的比值=1/[(2n+2)(2n+3)]趋于0

判定级数∞∑n=1 [(-1)^n-1]*(3^n)(x^2n)/n]的敛散性.

/>前n项和Sn=1-1/√2+1/√2-1/√3+...+1/√n-1/√n+1=1-1/√n+1趋于1 级数收敛于1∑(-1)^n1/3^n=∑(-1/3)^n=(-1/3)/(1+1/

用根值审敛法判定级数的敛散性:∑(n/2n+1)^n

lim[:(n/2n+1)^n]^(1/n)=lim(n/(2n+1))=1/2

利用比较审敛法判定级数[∞ ∑ n=1] sin[π /(2^n)]的敛散性

因为当n趋于无穷时,π/2^n趋于0所以根据等价无穷小的代换:sint〜t(t—>0),有sin[π/(2^n)]〜π/(2^n)(n—>无穷)所以[∞∑n=1]sin[π

利用比值审敛法判定级数[∞ ∑ n=1] (n!)^2 / [(2n)!]的敛散性

an=(n!)^2/[(2n)!]an+1/an=[(n+1)!]^2/[(2n+2)!]/(n!)^2/[(2n)!]=[(n+1)!/n!]^2*[(2n)!/(2n+2)!]=(n+1)^2/(

判定级数∑(n=1,∝) [nsin(nπ/3)]/3^n 的敛散性

因为|nsin(nπ/3)]/3^n|无穷大)[(n+1)/3^(n+1)]/[n/3^n]=1/3

判定级数∑(n-1,正无穷)1/(√3n2+2n)的敛散性

级数发散.lim(n→∞)1/√(3n^2+2n)/1/n=lim(n→∞)n/√(3n^2+2n)=lim(n→∞)1/√(3+2/n)=1/√3.∑1/n发散,所以级数∑1/√(3n^2+2n)发

用比值判别法判定正项级数n=1∑∞1/n!的敛散性

应该是收敛的,比式判别法就是如果得n+1项与第n项的比如果始终小于一个小于1的正数就收敛,大于1就发散,(1/(n+1)!)/(1/n!)=1/n+1肯定是小于1的,所以应该是收敛的.再问:1/n+1

用比较判别法判定级数的敛散性

下图提供一个两种方法的总结表格.并用两种方法分别解答了上面的三道题,欢迎追问. 点击放大:再问:第二题中这个怎么化简出来哒。。看不懂。。能不能用用limUn+1/Un,虽然你用limUn/U

判定级数∑(1,+∞)n/2^n的敛散性

比值判别法lim[u(n+1)/u(n)]=lim[(n+1)/2^(n+1)/(n/2^n)]=1/2<1所以,级数收敛.

判定下列级数的敛散性 图片上的题目.

1)比值法a(n+1)/an=(n+1)/(2n)->1/2=p1.∴原级数发散

用比值判别法判定级数的敛散性

比值判别法判定级数的敛散性就是:后项比前项的极限,小于1收敛,大于1发散1.lim(n→+∞)u(n+1)/u(n)=lim(n→+∞)[5^(n+1)/(6^(n+1)-5^(n+1))]/[5^n

判定级数∑(n从1到∞)(n^(1/n)-n^(1/(n+1)))的敛散性.

设f(x)=n^(1/x),an=f(n)-f(n+1),有拉格朗日定理,对足够大的n有|an|=f'(ξ)=n^(1/ξ)㏑n/x^2

用比值审敛法判定下列级数的敛散性

对∑(2^n)/n!则an=(2^n)/n!因为a(n+1)/an=[(2^(n+1))/(n+1)!]/[(2^n)/n!]=2/(n+1)所以lim[a(n+1)/an]=lim[(2^(n+1)

判定级数的敛散性

1/ln(n+1)>1/(n+1),级数1/(n+1)发散,所以级数1/ln(n+1)发散.