f(x)在[a,b]上连续,且f(x)>0,证明f(x)dx上限b下限a

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/31 07:07:16
如果函数f(x)在区间[a,b]上连续且定积分{上限a,下限b}f(x)dx=0,证明在[a,b]上至少

至少有一个点,f(x)=0,且该点的导数f'(x)≠0你可以假设f(x)=sinx从0~2π的图案当x=π的时候f(x)=0而这个图像,π的面积和π~2π的面积是相等的.但f(x)从0~π的积分是正的

证明设f(x)在有限开区间(a,b)内连续,且f(a+) ,f(b-)存在,则f(x)在(a,b)上一致连续.

令g(x)=f(x)x∈(a,b)g(x)=f(a+)x=ag(x)=f(b-)x=b显然g(x)在[a,b]内连续,所以一致连续.当然在(a,b)连续.g(x)在(a,b)正好为f(x)

若函数f(x)在闭区间[a,b]上连续,在(a,b)可导,且f(a)=b,f(b)=a.

(1)令g(x)=f(x)-x在区间(a,b)内连续g(a)=b-a>0g(b)=a-

设f(x)在[a,b]上连续,且没有零点,证明f(x)在[a,b]上保号

反证法最适用,假定存在x1,x2属于[a,b],满足f(x1)*f(x2)

函数f(x)与xf(x)在[a,b]上连续,且f(x)与xf(x)在[a,b]上的定积分都==0,

假设f(x)在(a,b)上恒不等于0,则f(x)在(a,b)内恒正或恒负,根据积分不等式性质有f(x)在(a,b)上的积分要么大于0,要么小于0.这与f(x)在[a,b]上的定积分==0矛盾.故存在一

运用连续的性质,证明:如f(x)在[a,b]上连续,且无零点,则f(x)>0或f(x)<0

若f(x)在[a,b]上不保持同一符号,则在[a,b],至少存在c,d两个数,使f(c)>0,而f(d)

设函数f(x)在[a,b]上连续,在(a,b)内可导且f'(x)

F'(x)=【f(x)(x-a)-∫(a,x)f(t)dt】/(x-a)^2=【f(x)(x-a)-f(t0)(x-a)】/(x-a)^2=【f(x)-f(t0)】/(x-a)

设f‘(x)在[a,b]上连续,且f(a)=0,证明:|∫b a f(x)dx|

设g(x)=∫f(t)dt,则g'(x)=f(x),g"(x)=f'(x).g(x)在[a,b]二阶连续可导,且g(a)=0,g'(a)=f(a)=0.由带Lagrange余项的Taylor展开,存在

设函数f(x)在[a,b]上连续,在(a,b)内有二阶导数,且有f(a)=f(b)=0,f(c)>0(a

使用3次拉格朗日定理即可详细过程请见下图

f(x)在[a,b]上连续,在(a,b) 内可导,且 f '(x)≤0,F(x)=1/(x-a)∫(x-a)f(t)dt

这个就是变上限积分的求导公式:[∫[a→x]f(t)dt]'=f(x)[∫[a→g(x)]f(t)dt]'=f(g(x))g'(x)∫[a→x]f(t)dt/(x-a)求导,就是用了个除法求导公式.【

若f(x)在[a,b)上连续,且lim f(x) (x->b-) 存在,证明f(x)在[a,b)上有界.

因为lim(x->b-)f(x)存在,不妨设为B,对于是ε=1,由函数极限的定义可知,必存在一个正数δ(最好取的小一点,小于b-a),当b-δ

设f(x)在[a,b]上连续且非负

可以根据定义来做.将区间〔a,b〕分为等长的n个子区间.设xi为第i个区间的中点.设pi=f(xi)coskxi,qi=f(xi)sinkxi,ri=f(xi).如果我们能证明下式,两边平方和内配上子

设函数f(x)在[a,b]上连续,在(a,b)可导,且f(a)*f(b)>0,f(a)*f((a+b)/2)

设F(x)=e^(-kx)f(x)由f(a)*f(b)>0,f(a)*f((a+b)/2)0F(a)*F((a+b)/2)0F(b)>0F((a+b)/2)再问:我想问一下,F(x)=e^(-kx)f

f(x)在[a,b]上连续,(a,b)上可导,且f′(x)>0,若x趋向于a+,limf(2x-a)/(x-a)存在,证

由于x趋于a+时,分母x-a是趋于0的,所以如果极限limf(2x-a)/(x-a)存在,分子f(2x-a)也必须趋于0,这样的0/0型未定式极限才可能存在.故x趋于a+时有limf(2x-a)=0,

设f(x)在闭区间(a,b)上连续,且a

此题漏了一个条件m,n>0.如果f(c)=f(d),取w=c即可.如果f(c)不=f(d),令g(x)=f(x)-(mf(c)+nf(d))/(m+n),a

【中值定理证明题】设函数f(x)在[a,b]上连续,在(a,b)上可导,且f(a)f(b)>0,f(a)f((a+b)/

由f(a)f((a+b)/2)0,同理可知((a+b)/2,b)上存在x2,使得f(x2)=0,构造函数G(x)=f(x)/e^kx,G(x1)=G(x2)=0,G(x)在[x1,x2]可导且连续,在

设f(x) 在[a,b] 上连续,且f(x)>0.求证:∫(a,b)f(x)dx*∫(a,bdx/f(x)≥(b-a)^

证明因为f(x)>0,所以√f(x)>0,1/√f(x)>0.因而∫(a,b)[t*√f(x)+1/√f(x)]^2dx≥0,t为任意实数,即∫(a,b)t^2*f(x)dx+2t∫(a,b)dx+∫