求y=sinx绕x轴旋转所得旋转曲面的面积

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/17 08:42:34
求曲线y=x^2与直线y=2x所围平面图形绕x轴旋转一周所得旋转体的体积

求曲线y=x²与直线y=2x所围平面图形绕x轴旋转一周所得旋转体的体积由x²-2x=x(x-2)=0,得x₁=0,x₂=2;即直线与抛物线相交于O(0,0)

求曲线方程y=sinx,0≤ x≤π与y=0所围成的图形绕y轴旋转一周所得的旋转体的体积

你还是说绕哪个轴旋转的体积怎么算?如果是绕Y轴旋转,你可以先画出图形,是一个中心凹陷、中间凸起、边缘光滑过度的一个东东,它的体积有两种算法:一种是微薄片圆筒法求积,沿半径方向从0积到π,就是你写出来的

求曲线y=sinx和它在x=pi/2处的切线及直线x=pi所围成图形的面积,并求此图形绕x轴旋转所得旋转体的体积

1,切线:对函数求导有:y′=-cos(x)而-cos(π/2)=-√(1/2)sin(pi/2)=sqrt(1/2)即y-√(1/2)=-√(1/2)[x-π/2]可以得y=-x√(1/2)+π/2

求曲线y=sinx和它在x=p/2处的切线及直线x=p所围成图形的面积,并求此图形绕x轴旋转所得旋转体的体积.

p是π吗?它是长为π,高为1的矩形去掉[0,π]区间内的正弦曲线所围面积,S=1*π-∫[0,π]sinxdx=π-(-cosx)[0,π]=π+(cosπ-cos0)=π+(-1-1)=π-2.V=

求椭圆x^2/4+y^2/6=1绕轴旋转所得旋转体的体积.

绕X轴的旋转体的体积:Vx=2∫(2,0)πy^2(x)dx=4π∫(2,0)(6-3x^2/2)dx        &

求曲线方程y=sinx,0≤ x≤π与y=0所围成的图形绕Ox轴旋转一周所得的旋转体的体积

绕Ox轴旋转所得旋转体的体积公式为:V=∫a到b区间π【f(x)】2dx因此,旋转一周所得体积为:V=∫0到π区间π(sinx)2dx=π2/2

求曲线y=x^2,直线x=2和x轴所围成的图形绕直线y=-1旋转所得旋转体的面积?

如图:所得旋转体的面积=82.42. 旋转体体积=9.16请核对数据无误后再采纳.

求曲线y=x^3,直线x=2,y=0所围成的图形,绕y轴旋转所得旋转体的体积

联立方程组x=2y=x^3解得两曲线的交点(2,8)所围成的平面图形绕y轴旋转的旋转体体积为V=∫(0,8)π[2^2-[(³√y)^2]dy=π{4y-3[y^(5/3)]/5}|(0,8

求y=sinx(0≤x≤派)与x轴所围成图形绕x轴旋转一周后所得到立体的体积.

图形是半圆,最高点是1,所以半径为1.用公式4/3pir^3,得到答案4/3pi.再问:能写出解答过程麽,亲,这是考试题,我要求过程~~~~(>_

求曲线{x=1,y=z}绕y轴旋转一周所得的曲面方程.

x^2-y^2+z^2=1设点M(a,b,c)在直线L上,点N为点M绕Z轴旋转所得的点,设N(x,y,z),则有z=c,x^2+y^2=a^2+b^2,于是有:总之消去a,b,c;就可以得到了

求由y=sinx,y=cosx所围成图形绕x轴旋转一周所得旋转体体积.

首先必须指出:他们若不加限制,则答案为“无限大”.题目应该写明【四分之一周期】的图像旋转生成的立体图形的体积.就是图中任一个色块构成的旋转体体积.有常用的体积公式.我写了思路,你自己是否可以解决啦?&

求曲线y=x^2与x=1,y=0所围图形分别绕x轴和y轴旋转所得旋转体的体积

y=x^2和x=1相交于(1,1)点,绕X轴旋转所成体积V1=π∫(0→1)y^2dx=π∫(0→1)x^4dx=πx^5/5(0→1)=π/5.绕y轴旋转所成体积V2=π*1^2*1-π∫(0→1)

求曲线y=x^2,x=y^2所围成的图形绕y轴旋转所得旋转体的体积

这个体积公式,y=f(x),x=a,x=b,x轴围成的曲边梯形绕x轴旋转一周形成的实心立体的体积公式V=π∫(0,1)f^2(x)dx你现在求的是两个题体积的差,带入公式就得到上面的解题过程.再问:v

求y=lnx,y=1及x=e^2所围平面图形分别绕x轴和y轴旋转所得旋转体的体积

哎,一条是横线,一条是竖线,一条是自然对数曲线.干脆套用积分公式就可以啦.当它绕着x轴旋转时,被积函数是y的平方.上限为x=e^2,下限为x=e.如图.当它绕着y轴旋转时,方法相同.最好是自己完成哈.

用定积分求由y=x^2+1,y=0,x=0,x=1绕x轴旋转一周所得旋转体的体积

0到1积分∫∏(2X+1)平方dx答案为:2∏用微元法,切成一个个小的圆柱体,即可.

求由曲线y=sinx与x轴所围成图形绕y轴旋转所得体积,0=<x

绕y轴旋转所得体积=∫2π*x*sinxdx=2π∫x*sinxdx=2π[(-x*cosx)│+∫cosxdx](应用分部积分法)=2π[π+(sinx)│]=2π(π+0)=2π²

y=sinx,0≤x≤π绕x轴旋转所得旋转曲面的面积和体积

先求所得旋转体的体积.在X轴上距离原点x处取一微元dx.y=sinx在x到x+dx之间与x轴之间形成一矩形条,将该矩形条绕x轴旋转得旋转体在x到x+dx之间的体积元素,即一个圆柱体,体积=∫π(sin

y=sinx,0≤x≤π绕x轴旋转所得旋转曲面的面积

提示令1+cosx=tdt=-sinx*dx原式=-k(根号下t)*dt(k是代表前面那一堆,因为不好打所以用k代替)这样就好求了得到:-k(1+cosx)的二分之三次方+c然后把0和π代入作差求绝对