已知函数f(x)=(2-a)lnx x 1 2ax

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/25 01:38:20
已知函数f(x)=(x2+2x+a)/x

已知函数f(x)=(x2+2x+a)/x(1)若a=1/2,当x∈[1,+∞)时,求函数的最小值(2)当x∈[1,+∞)时,f(x)>0恒成立,求实数a的取值范围(3)当x∈[1,+∞)时,f(x)>

已知函数f(x)=Inx,g(x)=1/2*x^2+a,若直线l与y=f(x),y=g(x)的图像都相切,且l与f(x)

l与f(x)相切的切点横坐标为1.所以该点为(1,0)f'(x)=1/x,所以该点切线斜率为k=f'(1)=1所以切线方程为y=x-1g'(x)=x,y=x-1与g(x)相切所以g'(x)=1所以x=

已知二次函数f(x)=x^2+x+a(a>0),若f(m)

f(x)=(x+1/2)+(a-1/4)>=a-1/4,由于f(m)

已知a>0,函数f(x)=lnx-ax.(1)设曲线y=f(x)在点(1,f(1))处的切线L,若L与圆(x+1) 2

f(x)=lnx-axf'(x)=1/x-af'(1)=k=1-af(1)=ln1-a=-a所以切线L方程是y+a=(1-a)(x-1)=x-1-ax+ay=(1-a)x-1把y=(1-a)x-1代入

已知二次函数f(x)=x^2+x+a(a>0).若f(m)

f(x)=x平方+x+a=x(x+1)+a∵f(m)<0∴f(m)=m(m+1)+a<0即m(m+1)<-a又∵a>0,且m<m+1∴m<0,m+1>0∵(m+1)平方≥0∴f(m+1)=(m+1)平

已知函数f(x)=lnx+a/x,且直线l与曲线y=f(x)相切求直线l的斜率k的取值范围

这题很诡异啊.f’(x)(导数就是斜率)=(x-a)/x^2,x>0.设t=1/x,则)(x-a)/x^2=t-at^2,对-at^2+t进行分析,原式为-a[t-(1/2a)]^2+1/4当t=1/

已知函数f(x)=(2x-a)/(x2+2)

提示:利用x+1/x,然后将x2+2配成(x-a/2)形式直接告诉答案多不好有提示加你的聪明头脑得到的答案最好:)

已知函数f(x)=x^2+2x+a,g(x)=f(x)/x.

g(x)=f(x)/x=x+2+a/x=x+a/x+2≤-2*2+2=-2,当x=-2时等号成立,最大值-2.当a>0时,g(x)>0在[1,+∞),恒成立(证略)当a=0时,g(x)=x+2在[1,

已知二次函数f(x)=x^2+x+a(a>0)若f(m)

先把等式化成顶点式,f(x)=(x+1/2)^2-1/4+a,当x=-1/2时取到最小值,我们将x=-1/2加1,因为最低点要是加1之后大于0,那么其它点也会成立,f(1)=1+1+a>0(a>0),

已知函数f(x)=lg(x+a/x-2)

函数y=x+a/x≥2√a,a∈(0,+∞),并且此函数有一个重要性质:在(0,√a]上单调递减,在[√a,+∞)上单调递增.(这个性质的证明比较简单,你自己证)因此,若04,最小值t(a)=f(√a

已知函数f(x)=(2-a)x+1,x

这个,是两个函数吧(1)f(x)=(2-a)x+1,x

已知函数f(x)=|x+a|+|x-2|

(1)当a=-3时,f(x)≥3即|x-3|+|x-2|≥3,即①x≤23−x+2−x≥3,或②2<x<33−x+x−2≥3,或③x≥3x−3+x−2≥3.解①可得x≤1,解②可得x∈∅,解③可得x≥

已知函数f(x)=-cos^2x+cosx+a

第一问可以把f(x)看作是一个二次函数-cos^2x+cosx+aa=-1,b=1,c=a只需b^2-4ac≥0即1+4a≥0解得a的取值范围为(-1/4,+∞)第二问我还在想.再问:  谢谢,,,呃

已知函数f(x)=a-(2\2x+1)

因f(-x)=-f(x)所以:a-(2\-2x+1)=-a+(2\2x+1)a=-2/(4x²-1)奇怪,a的值无法确定?!仔细推敲一下原题,发现原题是错的!已知函数是y=-1/x的平移变形

已知函数f(x)=lg(a^x-b^x)(a>1>b>0) 若函数y=f(x)恰在(1,+无穷)内取正值,且f(2)=l

f(2)=lg(a^2-b^2)=lg2,即a^2-b^2=2;由f(x)函数图像可得:lg(a^1-b^1)=0,即a-b=1;(a+b)(a-b)=2;a-b=1,得a+b=2,求得:a=3/2,

已知函数f(x)=loga(x+3)在区间[-2,-1]上总有lf(x)l

在区间[-2,-1]上总有lf(x)l1时,f(x)在区间〔-2,-1〕上大于0的所以logat√2当0