2^n (n^2 1)级数的收敛半径

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/18 01:12:18
级数收敛性的证明求:设∑an^2收敛,证明:∑an/n绝对收敛?

证明:∑an^2收敛,所以,∑|an|收敛,所以,∑|an|/n收敛,所以,∑an/n绝对收敛.

利用级数收敛的必要条件证明 lim n-> 无限 n^n/(n!)^2=0

limn->无限n^n/(n!)^2=limn->无限Π(i=1→n)[n/(i²)]=limn->无限e^ln[Π(i=1→n)n/(i²)]=limn->无限e^Σ(i=1→n

如何证明级数n^n/(n!)^2是收敛的

只需要求后一项与前一项的比值:为(n+1)^(n+1)*(n!)^2/[n^n*(n+1!)^2]=(n+1)^(n-1)/n^n=【(n+1)/n】^n*【1/(n+1)】lim【(n+1)/n】^

求级数∑(n+1)(n+2)x^n的收敛区间,并求和函数

令An=(n+1)(n+2)由比值审敛法:p=lim(n->无穷)An/An+1=1=>收敛半径R=1/p=1=>收敛域:(-1,1)下面来讨论x=-1和1处的敛散性:1.当x=1时,原级数E(n+1

求级数的收敛半径∑((1/2∧n)+3∧n)×x∧n

再问:错的,答案是三分之一再答:

证明:级数∑(n=1,∞) 1/(n²+2n²)是收敛的.

题目错了吧,应是“1/(n³+2n²)”吧1/(n³+2n²)1/(n³+2n²-3n)=1/[n(n+3)(n-1)]=(1/2)[(n+

证明级数(-1)^n/n是收敛的

设部分和数列为Sn则S[2k]=Σ-1/[(2k)(2k-1)]收敛S[2k-1]=S[2k]-(-1)^n/n收敛从而Sn的奇数子列和偶数子列收敛到同一个值所以Sn收敛即原级数收敛

求级数 ∑(x-3)^n / n-n^3 的收敛半径和收敛域!

令t=x-3,级数变为∑t^n/(n-n^3),ρ=lim(n→∞)|a(n+1)/an|=lim(n→∞)|n(1-n^2)/(n+1)((n+1)^2-1)|=lim(n→∞)n/(n+2)=1,

利用级数收敛的必要条件证明lim n→∞ n^n/(n!)^2=0

考虑级数n^n/(n!)^2后项比前项=[(n+1)^(n+1)/(n+1)!^2]/[n^n/(n!)^2]=[(1+1/n)^n]/(1+n)趋于0

利用级数收敛的必要条件证明2^n*n!/n^n的在n趋于无穷大时极限为0

再答:如果满意,请点右上角“采纳答案”再问:级数x^n/n+1求和函数,收敛区间要对0另外讨论吗?老师讲没有提过,但答案里面是当x为0时函数为1,有点疑惑再答:幂级数在x=0始终收敛啊再问:嗯,不过这

几道级数的问题级数n!/n^n的敛散性,并证明级数2^n*n!/n^n的敛散性,并证明幂级数n!*x^n/n^n的收敛半

a(n)=n!/n^na(n+1)/a(n)=(n+1)!/(n+1)^(n+1)*n^n/n!=(n+1)n^n/(n+1)^(n+1)=[n/(n+1)]^n=1/[1+1/n]^nlim_{n-

ln(n)/n^2 级数和是否收敛?

楼上的是不是胡说.1/n根本不收敛.这个级数是收敛的.n充分大时,ln(n)

级数的收敛问题级数sin n/n方的收敛性?(发散,条件收敛,绝对收敛?)

因为sinn=n-n^3/3!+aa是高阶无从小.那么级数sin/n=1-n^2/3!,由于1-n^2/3!当n->无从时不趋于零.所以原级数发散.

级数1/2的根号n次方如何证明收敛

a[n+1]/a[n]={1/2^[(n+1)/2]}/[1/2^(n/2)]=1/2^(1/2)

求级数∑∞n=1(1/2n)(x^n^2)的收敛域

级数为   ∑{n>=1}[x^(n^2)]/(2n),由于   lim(n→inf.)|{x^[(n+1)^2]}/(2n+2)|/|[x^(n^2)]/(2n)|  =lim(n→inf.)|x^

有关级数收敛若级数∑an收敛,为什么级数∑an + a(n+1)也收敛?而∑a(2n-1) - a(2n)不一定收敛?

例如an=(-1)^(n-1)/n∑a(2n-1)-a(2n)=∑1/n发散∑an+a(n+1)里两个项是同号的,由于∑an收敛,所以∑2an也收敛,并且任意添加括号后也收敛∑2an=2a1+2a2+

级数收敛设级数∑Un(n=1,2,…,∞)收敛,证明∑(-1)^n*Un/n不一定收敛,(-1)^n指-1的n次方.

只要举出反例即可.令U(n)=(-1)^n/ln(n+1)(+1是为了保证n=1时有意义),则U(n)是趋于零的交错数列,所以由Leibnitz判别法知∑U(n)收敛.(-1)^n*U(n)/n=1/

一个级数∑An收敛,请问它的偶数项级数∑A(2n)和奇数项级数∑A(2n+1)是否还收敛?

分情况一,正项级数则收敛,简单证明下设∑An=k则an必然有界an中m项和为∑bm