设y=f(x)是R上的奇函数,且当x属于R时,都有f(x+2)=-f(x),(1)试证明是周期函数,并求周期
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/11 03:27:32
设y=f(x)是R上的奇函数,且当x属于R时,都有f(x+2)=-f(x),(1)试证明是周期函数,并求周期
(2)试证x=1是其图像的对称轴,(3)若当-1≤x≤1时,f(x)=sinx,试写出当x属于[1,5]时,f(x)的解析式,(4)对于第(3)小题中的f(x),若集合A=x丨丨f(x)丨>a,x属于R,是非空集合,求a的取值范围,.
关键是后面几小问
(2)试证x=1是其图像的对称轴,(3)若当-1≤x≤1时,f(x)=sinx,试写出当x属于[1,5]时,f(x)的解析式,(4)对于第(3)小题中的f(x),若集合A=x丨丨f(x)丨>a,x属于R,是非空集合,求a的取值范围,.
关键是后面几小问
第一问:由题意可得 f(x+2+2)=-f(x+2)=-[-f(x)]=f(x).所以周期为4.
第二问:只要证明f(x+1)=f(1-x)成立就行了.
f(1-x)=f[-(x-1)]=-f(1-x)=f(1-x+2)=f(1+x),///(这个式子是有题目中的条件做的等式变换的来的,奇函数以及f(x+2)=-f(x)).所以很容易就可以证明f(x+1)=f(1-x)是成立的.所以x=1是其对称轴.
第三问:主要是用到周期函数了.并且由f(x+2)=-f(x),f(x+4)=f(x).做一下转化就可以求出解析式了.和上一问的转化差不多...
第四问:只要把第三问的解析式就出来,这个问题就很容易了...只要让小于求出函数绝对值的最小值就OK了...
第二问:只要证明f(x+1)=f(1-x)成立就行了.
f(1-x)=f[-(x-1)]=-f(1-x)=f(1-x+2)=f(1+x),///(这个式子是有题目中的条件做的等式变换的来的,奇函数以及f(x+2)=-f(x)).所以很容易就可以证明f(x+1)=f(1-x)是成立的.所以x=1是其对称轴.
第三问:主要是用到周期函数了.并且由f(x+2)=-f(x),f(x+4)=f(x).做一下转化就可以求出解析式了.和上一问的转化差不多...
第四问:只要把第三问的解析式就出来,这个问题就很容易了...只要让小于求出函数绝对值的最小值就OK了...
设y=f(x)是R上的奇函数,且当x属于R时,都有f(x+2)=-f(x),(1)试证明是周期函数,并求周期
已知定义在R上的奇函数y=f(x)是周期为2的周期函数,且当x属于(0,1)时 f(x)=2x+1,f(201.1)=
设函数f(x)是定义在实数R上的偶函数,且f(x)是周期为2的周期函数,已知当x属于{2,3}时,有f(x)=x,求当x
设f(x)是定义在r上的奇函数,对任意x都有f(2/3+x)=-f(2/3-x)成立,证明为周期函数并指出其周期
设f(x)是定义在R上的函数,且f(x+2)=f(-x)(x属于R),证明f(x)是周期函数.
设f(x)是定义在R上的奇函数,且f(x+2)=f(-x)(x属于R),证明:f(x)为周期函数
周期函数Y=F(X)是定义在R上的奇函数,且满足F(X+2)+F(X)=0.则FX的周期是?
设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x)求证;f(x)是周期函数
设定义在R上的偶函数f(x)是周期为2的周期函数,且当2≤x≤3时,f(x)=x,求当-1≤x≤0时,f(x)的表达式
已知函数f(x)是定义域R上单调递减的奇函数,当x、y属于R时,都有f(x+y)=f(x)+f(y),f(1)=1,求f
设f(x)是定义在R上的周期为4的奇函数,且f(x)的图像关于直线x=a对称,当x属于〔0,1〕时,f(x)=根号x,求
已知f(x)是定义在R上的奇函数,又是周期为3的周期函数,当x属于(0,2】时,f(x)=2^x-1,则f(log0.5