作业帮 > 数学 > 作业

已知数列{an}中,an=1024+lg2^1-n问前多少项之和为最大?前多少项之和的绝对值最小

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/05/21 09:37:53
已知数列{an}中,an=1024+lg2^1-n问前多少项之和为最大?前多少项之和的绝对值最小
an=1024+lg2^(1-n)=1024+(1-n)lg2=1024+(n-1)lg(1/2)
即an是首项为1024公差为lg(1/2)的等差数列,
sn=1024n+(1/2)n(n-1)lg(1/2)=1024n-(1/2)lg2*(n^2-n)
sn'=1024-(1/2)lg2*(2n-1)=0
n=1024/lg2+1/2
=1024/0.3010+0.5≈3402.5
即当n在3402.5处函数sn有极值,
当n>3403时,sn'<0,sn单调递减
当n<3402时,sn'>0,sn单调递增
所以sn在n=3402或3403处的最大值,
比照s3402和s3403后确定最大值,
s3402=1024n-(1/2)lg2*(n^2-n)