作业帮 > 综合 > 作业

在平行四边形ABCD中,角A=45°,BD⊥AD,点M在射线AB上,连结DM,过点M作MN⊥DM,交直线BC于点N.

来源:学生作业帮 编辑:作业帮 分类:综合作业 时间:2024/11/01 07:37:28
在平行四边形ABCD中,角A=45°,BD⊥AD,点M在射线AB上,连结DM,过点M作MN⊥DM,交直线BC于点N.
(1)当点N在线段CB的延长线上(如图1)时,求证:√2 BM-BN=AD
(2)当点N在线段BC的延长线上(如图2)时,BM,BN,AD的数量关系为__________
(3)在(2)的条件下,若AB=24,CN:BN=1:3,求线段AM的长?

(1)过点M作MF⊥BC交BD于点F,
∵四边形ABCD是正方形,
∴∠C=90°,
∴FM∥CD,
∴∠NDE=∠MFE,
∴FM=BM,
∵BM=DN,
∴FM=DN,
在△EFM和△EDN中,
∠NDE=∠MFE
∠NED=∠MEF
DN=FM,
∴△EFM≌△EDN,
∴EF=ED,
∴BD-2DE=BF,
根据勾股定理得:BF=根号2BM,
即BD-2DE=根号2BM.
(2)过点M作MF⊥BC交BD于点F,
与(1)证法类似:BD+2DE=BF=根号2BM,
故答案为:BD+2DE=根号2BM.
(3)由(2)知,BD+2DE=根号2BM,BD=根号2BC,
∵DE=根号2
∴CM=2,
∵AB∥CD,
∴△ABF∽△DNF,
∴AF:FD=AB:ND,
∵AF:FD=1:2,
∴AB:ND=1:2,
∴CD:ND=1:2
∴CD:ND=1:2,
CD:(CD+2)=1:2,
∴CD=2,
∴FD=4/3
∴FD:BM=1:3,
∴DG:BG=1:3,
∴DG=2分之根号2 再答: 采纳啊