作业帮 > 数学 > 作业

初中数学几何证明题(附图)求解答

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/05/21 08:14:15
初中数学几何证明题(附图)求解答
1.如图一所示,在正方形ABCD中,E、F是边BC、EF的中点,AE=BF且AE⊥BF,求证:GD=AD.(曾一度怀疑这题目出错,
2.如图二所示,已知△ABC
(1)请你在BC边上分别取两点D、E(BC中点除外),连接AD、AE,写出使此图中只存在两对面积相等的三角形的相应条件,并表示出面积相等的三角形.
(2)请你根据使(1)成立的相应条件,证明AB+AC>AD+AE
3.如图三所示,已知△ABC,过顶点A做∠B、∠C的平分线的垂线,AF⊥BF于F,AE⊥CE于E,求证:EF∥BC
4.如图四所示,已知BD、CE是△ABC的两条高,M、N分别是BC、DE的中点,求证:(1)EM=DM,(2)MN⊥DE
5.如图五所示,正方形ABCD,E、F分别为BC、CD边上一点
①若∠EAF=45°,求证:EF=BE+DF
②若△AEF绕A点旋转,保持∠EAF=45°,问△CEF的周长是否随△AEF位置的变化而变化?
图片有点小,你们可以保存下来再看,会比较清晰
(1) 延长GFAD交于点H,易证得三角形DFH≌三角形BCF(AAS),所以BC=DH
因为AD=BC 所以AD=DH  又因为∠AGH=90度,所以GD=AD
(2) (1)D E不是BC的三等分点  (2)尚未想出
(3)延长AE交BC于G, 延长AF交BC于H
因为CE平分角C,AE⊥CE,GE⊥EC, 所以AE=EG(三线合一) 同理AF=FH
所以EF∥GH 即EF∥BC  
(4)(1)在AB上截取EF,使EF=BE,在AC上截取DG使DG=DC
∵EF=BE,CE⊥BF∴BC=CF 又∵EF=BE,BM=MC∴ME=1/2BG(中位线)   同理可得:BC=BG,MD=1/2BG   又因为BC=CF=BG
所以MD=EM
(2)∵MD=EM ,EN=ND∴MN⊥ED
(5)(1)反向延长BE至G,使BG=地方,连结AG
∵BG⊥AB 角ADF=90度∴角ABG=角D 又因为AD=AB,DF=BG 
所以三角形ABG≌三角形ADF ∴角DAF=角BAG  因为角EAF=45度,
所以角DAF+角EAB=45度 所以角EAG=角EAF 又因为AE=AE,AF=AG
所以三角形AFE≌三角形AEG 所以EG=EF,所以EF=BE+DF
(2) 因为CF+CE=2BC-BE-DF=2BC-EF 
 又因为EF恒不变,所以2BC-EF恒不变 所以C三角形CEF恒不变 
看在辛苦码字即写了这么多步骤,请采纳吧 第2题明天想出再码
第二题想出来了,
2.(2)取BC中点F,连接AF
由两边之和大于第三边 ,可做如下解答
因为DF+AF>AD①,AF+EF>AE②,AF+CF>AC③,AF+BF>AB④
所以 ①+②:DE+2AF>AD+AE⑤ ③+④:2AF+BC>AB+AC⑥
⑤-⑥:DE-BC +2AF-2AF>AD+AE-AB-AC
因为DE-BC<0(由图) 所以AD+AE-(AB+AC)<0 所以AB+AC>AD+AE