设X,Y相互独立,都服从正态分布N(0,0.5)则E(X-Y)

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/16 04:56:34
设两个随机变量X,Y相互独立,且都服从均值为0、方差为12

令:Z=X-Y,则由于X,Y相互独立,且服从正态分布,因而Z也服从正态分布,且EZ=EX-EY=0-0=0,DZ=D(X-Y)=DX+DY=12+12=1,因此,Z=X-Y~N(0,1),∴E|X-Y

设X,Y相互独立,且都服从标准正态分布,则Z=X/根号下Y^2服从( ) 分布,并写出分布的参数

Z的分布叫做瑞利(Rayleigh)分布,具体求法:f(x,y)=[1/(2πσ^2)]*e^-[(x^2+y^2)/2σ^2]当z=0时,有:F(z)=∫∫f(x,y)dxdy,其中积分区域为x^2

设随机变量X与Y都是相互独立,切都服从标准正态分布,则,2X-Y+1服从什么分布,

依然正态分布 +1的话只是平均值+1,不影响方差图片来自维//……基,不添加链接了以防答案被吞

设随机变量X和Y相互独立,且都服从正态分布N(0,1),计算概率:P(X*X+Y*Y

随机变量x,y相互独立都服从N(0,1)则f(x,y)=fX(x)fY(y)=1/(2π)e^(-x²-y²)P(X^2+Y^2

大学概率论:设X,Y相互独立,都服从参数为2的指数分布,则P(X

解 实际上本题就是不用计算也能得出所求的概率为1/2.因为X和Y是相互独立的,且服从相同的分布,联合密度是边缘密度之积,由对称性可得X<Y的概率一定是1/2.当然X>Y的概率也是

设随机变量X,Y相互独立,且都服从[-1,1]上均匀分布,求X,Y的概率密度

你.有我当年风范f(x)={1/2-1再问:0,其他是什么意思啊直接在下面一行写就行了啊?再答:大括号把两行扩起来,就像我写的那样,扩两行,我这只扩了一行再问:能不能有点过程,我在考试啊,不能直接这样

设随机变量X,Y相互独立,且都服从两点分布B 则P(X=Y)=

P(X=Y)=P(X=0)P(Y=0)+P(X=1)P(Y=1)=1/9+4/9=5/9如有意见,欢迎讨论,共同学习;如有帮助,再问:为什么这么算啊?再答:根据独立性。书上讲更全面一些,建议您看书。

设随机变量X与Y相互独立,且服从同一分布,X的分布律为

由于:P(X=0,Y=0)=P(X=1,Y=0)=P(X=0,Y=1)=P(X=1,Y=1)=1/4.P(Z=1)=P(X=1,Y=0)+P(X=0,Y=1)+P(X=1,Y=1)=3/4.P(Z=0

设随机变量x与y相互独立,都服从参数为1的指数分布,求P{X

对参数为入1,入2的两个指数分布X1,X2P(X1>X2)=入1/(入1+入2)1/(1+1)=1/2E(a),E(b)为例P(X>Y)∫(0~)∫(0~y)abe^(-ax-by)dxdy=∫(0~

设随机变量X与Y相互独立,且都服从参数为3的泊松分布,证明X+Y仍服从泊松分布,参数为6

这个用泊松分布可加性来做,很简单X,Y相互独立且分别服从p(λ1),p(λ2)那么Z=X+Yp(λ1+λ2)参考资料里有他的证明

设随机变量X与Y相互独立,且都服从参数为3的泊松分布,证明X+Y服从泊松分布,参数为6

要用到微积分吗?具体公式给下回答:=Σ(3^I*e^(-3)I/I!)(3^(K-I)*e^(-3)I/(K-I)!)=Σ(3^I*3^(K-I)e^(-3)*e^(-3)/I!*(K-I)!)=Σ[

设随机变量x,y相互独立 都服从N(0,1) 计算概率P(X^2+Y^2

随机变量x,y相互独立都服从N(0,1)则f(x,y)=fX(x)fY(y)=1/(2π)e^(-x²-y²)P(X^2+Y^2

设x,y相互独立,都服从N(0,1)分布,试求E(根号(x2+y2))

φ(x)=[1/(根号2π)]e^[-(x^2)/2]故:f(x,y)=φ(x)*φ(y)=[1/(2π)]e^[-(x^2+y^2)/2].故:E((X^2+Y^2)^(1/2))=∫∫[(x^2+

概率论问题,设X.Y相互独立.且都服从参数为1的柏松分布,求X+Y服从哪种分布?

X.Y参数为1的柏松分布,则其母函数为Ψ(s)=e^(s-1)X.Y相互独立,X+Y母函数为Ψ(s,s)=Ψ(s)*Ψ(s)=e^(2(s-1))X+Y服从参数为2的泊松分布.再问:能再详细点吗。再答

设X与Y是相互独立随机变量,X服从均匀分布U[0,1/5].

1、概率密度f(x,y)=f(x)*f(y)=25e^(-5y)0

设随机变量XY相互独立,都服从(0.1)的均匀分布,求z=x+y的密度函数.

fZ(z)=∫(-∞→+∞)fX(x)fY(z-x)dx(1)z<0fZ(z)=∫(-∞→+∞)fX(x)fY(z-x)dx=0(2)0≤z<1fZ(z)=∫(0→z)1·1dx=z(3)1≤z<2f