设n 阶矩阵A 满足A^2=A ,且 .求出 的Jordan标准形

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/06 21:32:50
设A是n阶矩阵,满足AA^T=E(E是n阶单位矩阵),A^T是A的转置矩阵,且|A|

E+A^T=(E+A)^T两边取行列式|E+A^T|=|(E+A)^T|=|E+A|再问:甚妙甚妙!!!非常感谢!这个题我明白了。但是这个题里面A^T=A这个式子能不能成立呢?也就是说,已知AA^T=

设n阶矩阵A满足A^2=A,求A的特征值,并证明E+A可逆.

设j是的一特征值,则有X,使得AX=jX.而又有A^2×X=A(AX)=A(jX)=j(AX)=j^2×X因为A^2=A,故有:j^2×X=j×X即j^2=j求得j=0j=1由A^2=A有A^2-A-

设n阶矩阵A满足A^2=A,且r(A)=r,则|2E-A|=

因为A^2=AAα=λαλ^2=λ解得λ=1或0由于r(A)=r所以n阶矩阵A与对角矩阵1..1.1...0.0.0相似,其中λ=1为r重特征值,λ=0为n-r个则2E-A的特征值为1(r重),2(n

设A,B为n阶矩阵,且满足A^2=A,B^2=B,(A+B)^2=(A+B),证明:AB=0.

A^2=A,B^2=B,(A+B)^2=(A+B)==>AB+BA=0==>0=A^2B+ABA=AB+ABA,0=ABA+BA^2=ABA+BA===>ABA=-AB=-BA==>AB=BA

设A为n阶矩阵,且满足方程3A^-2A+4I=0.证明A与3A+2I均可逆

由已知,A(3A-2E)=-4I所以A可逆,且A^-1=(-1/4)(A-2E).再由3A^-2A+4I=0得A(3A+2I)-(4/3)(3A+2I)+8/3I=0所以(A-(4/3)I)(3A+2

设n阶矩阵A满足A^2=A且A≠E,证明|A|=0

设j是的一特征值,则有X,使得AX=jX.而又有A^2×X=A(AX)=A(jX)=j(AX)=j^2×X因为A^2=A,故有:j^2×X=j×X即j^2=j求得j=0j=1由A^2=A有A^2-A-

设N阶矩阵A满足A^2=A,证明E-2A可逆,且(E-2A)^-1=E-2A.求证明过程.

证明:因为A^2=A所以(E-2A)(E-2A)=E-4A+4A^2=E-4A+4A=E.所以E-2A可逆,且(E-2A)^-1=E-2A.

设A为n阶矩阵,且满足A^2=A ,则下列命题中正确的是( ) 为什么

D,很显然A=I和O时等式都满足,所以A,B都不对,至于C显然矩阵1000满足,但是它不是OD只要在等式两侧同时乘以A得逆矩阵就可以得到

设N阶矩阵A满足A^2-2A+3E=0 ,则秩A=N

对.A(A-2E)=-3E,A可逆,A^(-1)=-(A-2E)/3

设n阶矩阵A满足A^2+2A+3I=0,则A的逆矩阵?

因为A^2+2A+3I=0所以A(A+2I)=-3I所以A可逆,且A^-1=(-1/3)(A+2I).

设n阶方阵A,B满足A*BA=4BA-2E且|A|=2,|E-2A|≠0,求矩阵B

等式A*BA=4BA-2E两边左乘A,右乘A^-1,得|A|B=4AB-2E.代入|A|=2得B=2AB-E所以(2A-E)B=E因为|E-2A|≠0所以2A-E可逆故B=(2A-E)^-1.

线性代数你矩阵设n阶矩阵A满足条件A^k=O,证明:I-A可逆,且()^(-1)=I+A+A^2+A^3+……+A^(k

E-A^k=(E-A)(E+A+A^2+A^3+……+A^(k-1))且A^k=O所以有E=(E-A)(E+A+A^2+A^3+……+A^(k-1))由逆矩阵的定义得E-A可逆且E-A=I+A+A^2

27.设n阶矩阵A满足A2=A,证明E-2A可逆,且(E-2A)-1=E-2A.

要证明E-2A可逆我们可以假设其可逆,并设其逆为aE+bA则(E-2A)(aE+bA)=E那么aE+(b-2a)A-2bA^2=E又A^2=A那么(a-1)E-(b+2a)A=0所以a-1=0,b+2

设A为n阶实对称矩阵,且满足A^3-2A^2+4A-3E=O,证明A为正定矩阵

设λ是A的特征值则λ^3-2λ^2+4λ-3是A^3-2A^2+4A-3E的特征值而A^3-2A^2+4A-3E=0,零矩阵的特征值只能是0所以λ^3-2λ^2+4λ-3=0.λ^3-2λ^2+4λ-

设A是n阶实对称矩阵且满足A^2=A,设A的秩为r,求行列式det(2E-A),其中E是n阶单位矩阵

A^2=AA^2-A-2E=-2E(A-2E)(A+E)=-2E(2E-A)(A+E)=2E|2E-A||A+E|=2^n现在求|A+E|的值A是实对称阵,必可相似对角化,存在可逆阵P,使得P^(-1

设A为n阶矩阵,满足A2=A,设A为n阶矩阵,满足A2=A,试证:r(A)+r(A+I)=n

(结论应该是rank(A)+rank(A-I)=n,否则是错的.例:取A=I,则A^2=I=A,但rank(A)+rank(A+I)=rank(I)+rank(2I)=n+n=2n)证法一:令U={x

设a是n阶实对称矩阵,且满足A^2+2A=0,若kA+E是正定矩阵,则k的取值范围

由A^2+2a=0知道,A的特征值都是方程x^2+2x=0的根,所以A的特征值是0与-2,那么kA+E的特征值是k*0+1与k*(-2)+1,即1与1-2k,要想kA+E正定,则1-2k>0,所以k<

设n阶矩阵A满足A^2=E,且|A+E|≠0,证明A=E

/>n阶矩阵A满足A^2=E,===》矩阵A的零化多项式无重根,并且根只能为正负1,===》矩阵A的最小多项式无重根,并且根只能为正负1,===》矩阵A可以对角化,并且矩阵A的特征值只能为正负1,又因