设A为方阵,满足A²-A-E=0,则A

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/21 15:48:29
设A为N阶方阵,满足A^K=0,证明E-A可逆,并且(E-A)^-1=E+A+A^2+...+A^K-1

(E-A)(E+A+A^2+...+A^K-1)=E+A+A^2+...+A^K-1-(A+A^2+...+A^K)=E-A^k=E所以:E-A可逆,并且(E-A)^-1=E+A+A^2+...+A^

设n阶方阵A满足A^2-A+E=0,证明A为可逆矩阵,并求A^-1的表达式?

证明:因为A^2-A+E=0所以A(E-A)=E所以A可逆,且A^-1=E-A补充:这是个定理,教材中应该有的:若AB=E,则A,B可逆,且A^-1=B,B^-1=A证明很简单.因为AB=E两边求行列

设方阵A满足A*A-A-2E=0,证明矩阵A+E可逆,并求它.

A*A-A-2E要写成:A^2-A-2E,A^2-A-2E=(A+E)(A-2E)?不可能有A+E可逆,是否再看一下题,

设方阵A满足A²+3A-2E=0,证明方阵A+3E可逆,并求A+3E的逆矩阵.

移项得A²+3A=2E或A²+3AE=2E由矩阵乘法的右分配律得(1/2)A(A+3E)=E∴(A+3E)可逆且A+3E的逆矩阵为(1/2)A

设方阵A满足A*A=A 证明A+3E可逆,并求(A+3E)逆矩阵

A*A=A,A*A-A=0,A*A-A-12E=-12E(A+3E)(A-4E)=-12E,由于|(A+3E)*(A-4E)|=|A+3E|*|A-4E|=(-12)^n≠0(设A是n阶方阵),所以A

设n阶方阵A满足A*A-A-2E=0,证明A和E-A可逆

证明:因为A*A-A-2E=0,所以A(A-E)=2E或A(E-A)=-2E..所以A和E-A可逆,且A^-1=(1/2)(A-E),(E-A)^-1=(-1/2)A.满意请采纳^_^

线性代数 设n阶方阵A满足A^2=E,|A+E |≠0,证明A=E

A^2=E==>A^2-E=0==>(A+E)(A-E)=O|A+E|≠0所以A+E可逆那么方程(A+E)x=0只有0解也就是说A-E的每一列都是0,所以A-E=O

设A是n阶方阵,满足A乘以A一撇等于E,|A|

[A+E]=[A+A*A']=[A][E+A']=[A][(A+E)']=[A]*[A+E]得到(1-[A])[A+E]=0因为|A|

设A为n阶方阵且满足条件A^2+A-6E=0,则(A+4E)的-1次方=

(A+4E)(A-3E)=A^2+A-12E=-6E=>(A+4E)^(-1)=-(A-3E)/6

设A为n阶方阵,e为n阶单位矩阵,满足方程A²-3A-E=0,证明A可逆

A²-3A-E=0A^2-3A=EA(A-3E)=E因此A可逆,且其逆矩阵为A-3E

设n阶方阵A和B满足条件A+B=AB,证明A-E为可逆矩阵

证∵(A-E)(B-E)=E又:det(A-E)*det(B-E)=detE=1∴det(A-E)≠0∴A-E是可逆阵

大学线性代数 设A,B均为n阶方阵.1.A,B满足A+B+AB=0.证明E+A,E+B互为逆阵,

1、A+B+AB=0,A+B+AB+E=E,(E+A)(E+B)=E,所以E+A与E+B可逆且互为逆矩阵.所以(E+B)(E+A)=E,E+A+B+BA=E,A+B+BA=0.将A+B+AB=0与A+

设n阶方阵A满足A^2=E,证明r(A-E)=n-r(A+E)

证:由已知,A^2=E,(A+E)(A-E)=0所以r(A+E)+r(A-E)

设方阵A满足A^2-A-2E=0 证明A及A+2E都可逆

A^2-A-2E=0A^2-A=2EA(A-E)=2E所以A/2与(A-E)互逆同理A^2-A-2E=0A^2-A-6E=-4E(A-3E)(A+2E)=-4E看出来互逆了吧?再问:恩谢谢我就不知道我

设4阶方阵满足|3E+A|=0 ,AAT=2E,|A|

由A是4阶方阵,且AAT=2E,得|A|^2=|AAT|=|2E|=2^4=16.又由|A|

线性代数特征值设n阶方阵A满足A^2-3A+2E=0(E为单位矩阵),求A得特征值

设a是A的任一一个特征值,则a^2-3a+2=0,从而a=1或2.进而A的特征值为1和2.

设方阵A满足A^3-A^2+2A-E=0 ,证明: A及A-E均可逆.

因为A^3-A^2+2A-E=0所以A(A^2-A+2E)=E.所以A可逆,其逆为A^2-A+2E.再由A^3-A^2+2A-E=0得(A-E)(-A^2-2E)=E所以A-E可逆,且其逆为-A^2-

设方阵A满足A^2+A-E=0,证明A-E可逆并求出A-E

由已知,(A-E)(A+2E)=-E所以A-E可逆,且(A-E)^-1=-(A+2E).

设n方阵A满足A^2=A,E为n阶单位矩阵,证明R(A)+R(A-E)=n

因为A*A=A,所以A(A-E)=0;故A-E的每个列向量都是方程Ax=0的解,由于A-E中的列向量未必构成解空间的基,所以R(A)+R(A-E)小于等于n;又由R(A)+R(B)>=R(A+B);立