设A为n阶方阵且A2-2A-4E=0,试证A和E+A都可逆,并求他们的逆矩阵

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/12 12:17:18
设A是n阶方阵,且A2=A,证明A+E可逆

由A^2=A知道A的特征值只能是1和0若|A+E|=0,则-1是其特征值,这不可能所以|A+E|≠0,即可逆

设A为n阶方阵,且A2=A,证明:若A的秩为r,则A-E的秩为n-r,其中E是n阶单位矩阵.

因为:A2=A,所以:A(A-E)=0,则:r(A)+r(A-E)≤n,又因为:r(A)+r(A-E)=r(A)+r(E-A)≥r(A+E-A)=r(E)=n,所以:r(A)+r(A-E)=n,则:r

线性代数:设A为n级方阵,且|A|=2求|-3A|

|kA|=k^n|A|所以|-3A|=(-3)^n|A|=2*(-3)^n

设A是N阶方阵,若A2=A,且A不等于E,证A不是可逆矩阵

反证法若A是可逆矩阵,则A×A逆=EA=A×A×A逆=A×A逆=E矛盾

设A为n阶方阵,且A2=A,则R(A)+ R(A- E) =

求法很多,用一种最简单的:根据秩的不等式:R(A)+R(A-E)-n≤R[A(A-E)]=R(A^2-A)又因为:A^2=A,即A^2-A=0(零阵)因此:R(A)+R(A-E)-n≤R[A(A-E)

设n阶方阵A的两个特征值λ1,λ2所对应的特征向量分别为a1与a2,且λ1=-λ2不等于0,判断a1,a2是否A的特征

若a1+a2是A的属于特征值λ的特征向量则A(a1+a2)=λ(a1+a2)∴Aa1+Aa2=λ(a1+a2)∴λ1a1+λ2a2=λa1+λa2∴(λ1-λ)a1+(λ2-λ)a2=0.因为A的属于

设A为n阶方阵且满足条件A^2+A-6E=0,则(A+4E)的-1次方=

(A+4E)(A-3E)=A^2+A-12E=-6E=>(A+4E)^(-1)=-(A-3E)/6

设A是数域F上一个n阶方阵,且A^2=A(A为幂等矩阵)

证明:(1)因为A^2=A所以(A+I)A-2(A+I)=-2I所以(A+I)(A-2I)=-2I所以A+I可逆,且(A+I)^-1=(-1/2)(A-2I).(2)是要证r(A)+r(I-A)=n吧

设4阶方阵A=(a1,a2,a3,a4) ,B=(B1,a2,a3,a4),且|A|=1,|B|=2 ,则|A+B| .

|A+B|=|(a1,a2,a3,a4)+(b1,a2,a3,a4)|=|(a1+b1),2a2,2a3,2a4)|=2*2*2|(a1+b1),a2,a3,a4|=8[|a1,a2,a3,a4|+|

5、设4阶方阵A=(a1,a2,a3,a4) ,B=(B1,a2,a3,a4),且|A|=1,|B|=2 ,则|A+B|

|A+B|=|(a1,a2,a3,a4)+B1,a2,a3,a4)|=|(a1+b1),2a2,2a3,2a4)|=2*2*2|(a1+b1),a2,a3,a4|=8{|a1,a2,a3,a4|+|(

设A为N阶方阵,且A-E可逆,A^2+2A-4E=0,求A+3E的逆方阵

将A^2+2A-4E=0变化为A^2+2A-3E=E,即(A+3E)*(A-E)=E,因为(A-E)可逆,所以A+3E的逆方阵为(A-E)^-1

设A,B为n阶方阵,且r(A)+r(B)

设r(A)=p则存在矩阵P1,Q1使得P1AQ1=C1(C1只有前p行,前p列不为0)则A=P1^-1C1Q1^-1设r(B)=q则存在矩阵P2,Q2使得P2BQ2=C2(C2只有后q行,后q列不为0

设A为n阶方阵,且|A|=2,A*为A的伴随矩阵,则|A*|=?

设B为A的伴随矩阵,E为单位阵,AB=|A|E,|A||B|=|A|^n,|B|=|A|^(n-1)

设A为n阶方阵,且A=A^2;,则(A-2E)^-1

A=A^2A^2-A=0A^2-2A=-AA(A-2E)=-AA-2E=-E(A-2E)*(-E)=E所以:(A-2E)^-1=-E

设A为n阶方阵,且A*A=A,证明R(A)+R(A-E)=n.

因为A*A=A,所以A(A-E)=0;故A-E的每个列向量都是方程Ax=0的解,由于A-E中的列向量未必构成解空间的基,所以R(A)+R(A-E)小于等于n;又由R(A)+R(B)>=R(A+B);立

设A为n阶方阵,且A的行列式=1/2,则(2A*)*是多少

用伴随阵与逆矩阵的关系可如图得到答案是2A.经济数学团队帮你解答,请及时采纳.