n阶方阵的 r A2=A 可对角化

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/06 00:39:36
哪位高手帮忙证明一下线性代数里一条定理,n阶方阵A可对角化的充分必要条件是A有n个线性无关的特征向量.

[证明]充分性:已知A具有n个线性无关的特征向量X1,X2,……,则AXi=入iXii=1,2,……,nA[X1X2……Xn]=[入1X1入2X2……入nXn]=[X1X2……Xn]*X1,X2,Xn

证明题:设A为n阶矩阵,且A^2-A=2E.证明A可对角化.

这道题在不同的阶段可以有不同的方法.如果学了Jordan标准型和矩阵的最小多项式,可以用:矩阵可对角化的充要条件是其最小多项式无重根(即Jordan块都是1阶的).由A²-A=2E,知x&#

方阵A满足A^2+A-I=0,证明:A可对角化

条件(A-aE)(A-bE)=0,其中ab不相等,则A可对角化.证明:当AB=0时有不等式r(A)+r(B)再问:原式怎么化解?具体步骤是什么?再答:x^2+x-1=0,解为a=[-1+根号(5)]/

请问老师:n阶方阵A的k次方为单位阵,k为正整数,则A一定可以对角化吗?怎么证明?

可以.考虑矩阵的秩,有:R(AB)≤R(A),则n=R(E)=R(A^K)≤R(A)≤n,R(A)=n所以A是非奇异阵,可以对角化.

设n阶矩阵A满足A^2-3A+2E=0,证明A可相似对角化.

设a是A的特征值,则a^2-3a+2是A^2-3A+2E的特征值而A^2-3A+2E=0,零矩阵的特征值是0所以a^2-3a+2=0所以(a-1)(a-2)=0所以A的特征值是1或2.因为A^2-3A

复数域上n阶方阵A,证明A可表示成可对角化的矩阵B和一个幂零矩阵C的和,且BC=CB

Jordan-Chevally分解再问:还能具体点吗?再答:http://www.math.org.cn/forum.php?mod=viewthread&tid=25545&highlight=%E

在证明是否可以矩阵对角化过程中,利用定理n阶矩阵A可以对角化的充要条件为A有n个线性无关特征向量

定理:n阶矩阵A可以对角化的充要条件为A有n个线性无关特征向量k重特征值有k个线性无关的特征向量而对k重特征值λ,属于特征值λ的特征向量是齐次线性方程组(A-λE)x=0的非零解所以属于特征值λ的线性

若n阶矩阵A的n个特征值都相等,且A可对角化,则A一定是数量矩阵

这个不是很显然了吗.既然A可对角化,那么A=PDP^{-1}.既然A的特征值相等,那么D=kI,从而A=kPP^{-1}=kI.

一个可相似对角化的矩阵A,特征值是λ1,λ2……λn,

不是的,这个对角阵中的元素λ1λ2……λn怎么排列都是可以的,只要确定了就是这么几个数字就可以

已知n阶方阵A满足A^2+2A-3E=0,证明A可对角化

[证明](方法一:构造法)见下图\x0d\x0d[证明](方法二:利用特征值与特征向量)见下图\x0d\x0d[证明](方法三:利用极小多项式)\x0d因为A满足A2+2A-3E=O,即(A-E)(A

设A为n阶方阵,r(A)=r1,r(A+E)=r2,r(A+2E)=r3,且r1+r2+r3=2n.证明A可对角化.

证明:Ax=0,(A+E)x=0,(A+2E)x=0三个齐次线性方程组的基础解系共含(n-r1)+(n-r2)+(n-r3)=3n-(r1+r2+r3)=n个向量.所以A有n个线性无关的特征向量所以A

设A为n阶方阵,r(A)=r1,r(A+E)=r2,r(A+2E)=r3,且r1+r2+r3=2n,证明A可对角化.

说一下思路吧.把A,A+E,A+2E放在一个大矩阵(3n×3n)的对角线上,通过分块矩阵初等变换可以化成diag[E,E,A(A+E)(A+2E)]这一步是难点,楼主不妨尝试一下.初等变换不改变秩,所

矩阵对角化的问题1.若n阶方阵A,有r(A)=1,且trA不为0,证A可对角化2.若A和B都是n阶对角阵,证明A和B相似

两道题都很显然的.第一题,你进行jordan分块对角化,因为秩为1,马上可以推出分块上所有可能出现的1都为0,所以可对角.第二题,A,B相似,ifandonlyifA,B有相同特征多项式,ifando

线性代数问题,n阶矩阵A可对角化,a是它的一个特征值,xo是它对应的特征向量,证(aE-A)x=xo无解

这主要是关于A“可对角化"这个性质的.如果你知道Jordan标准型,那么可以想象,如果(aE-A)x=x_0有解的话,那么A在化成Jordan型之后,涉及x_0的那部分不是对角化的,而是一个大一些的J

n阶可对角化矩阵的线性无关特征向量的个数一定是n么

这个是当然的.如果P^{-1}AP=D,那么AP=PD,直接用乘法验证一下P的每一列都是A的特征向量.

AB=BA A B 都可对角化,证明A+B可对角化

设Q^(-1)AQ=D=diag(a1E,a2E,...,akE),其中a1,a2,...,ak是A的不同特征值,对应重数即为l1,l2,...,lk.在AB=BA中左乘Q^(-1),右乘Q得DQ^(

已知矩阵A可对角化,证明A的伴随矩阵也可对角化

证明:矩阵A可对角化,则存在可逆阵P,使P^(-1)AP=N为对角阵,P*[P^(-1)AP]*P^(-1)=PNP^(-1)A=PNP^(-1),A可逆,则A^(-1)=[PNP^(-1)]^(-1

线代一个n阶方阵可以对角化的充分必要条件是具有n个线性无关的特征向量 而并非所有n阶方阵都能对角化

不矛盾.具有n个线性无关的特征向量是一个推论而非唯一的判定条件.第二句话的意思是说矩阵具有什么条件我们才能推导出它可以对角化是复杂的问题,而第一句话是给出了在线性代数知识背景下的一个判别条件.