竖直平面内的四分之三圆形光滑管道

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/24 20:48:01
如图所示,一个四分之三圆弧形光滑细圆管轨道ABC,放置在竖直平面内,轨道半径为R,在A点与水平地面AD相接,地面与圆心O

(1)小球离开C点做平抛运动,落到M点时水平位移为R,竖直下落高度为R,根据运动学公式可得:R=12gt2运动时间为:t=2Rg      

如图所示 ,在竖直平面内固定的 圆形绝缘轨道的圆心在O点、半径为r,内壁光滑,A、B两点分别是圆弧的最低

重力和电场力的合力可以看做一个新的“倾斜的”重力C点速度最快,也就是新的“最低点”,对应的D点就是“最高点”,所以如果在B点不受压力的话小球是不可能到达D点的.题中已说了“小球做完整的圆周运动”所以速

一四分之三圆弧形光滑管道放在竖直平面内,如图,管道中心到圆心的距离为R,A点与圆心O等高,AD为水平面,B点在O的正下方

你好!受力分析,在水平滑道上受水平向左的拉力,水平向右的摩擦力,支持力和重力.在倾斜滑道上垂直于AB的支持力,竖直向下的重力,水平于AB向上的拉力和向下的摩擦力.(1)由牛顿第二定律,得F合=ma在水

如图所示,竖直平面内有一个光滑绝缘的3/4圆形轨道BCDG,轨道半径为R,下端

再问:请问还有b滑块呢?在B点a,b正碰。而且说了b滑块碰后的速度和a滑块碰前的速度相同。再答:解题的目的是,求出答案,在本题中,看不出b的有关条件。所以,就不理它。题设中,并没有说,二者碰后,就成为

如图所示,一个四分之三圆弧形光滑细圆管轨道ABC,放置在竖直平面内轨道半径为R,在A点与水平地面相接,地面与圆心o等高.

1、对轨道无压力,则mg=mVc^2/R,则在C点速度Vc=sqrt(gR).飞离C点后,mgR=0.5mv^2-0.5mVc^2,则v=sqrt(3gR)2、出C后物体平抛.水平方向:R=Vc*t,

如图所示,位于竖直平面内的光滑轨道,由一段斜的直轨道和与之相切的圆形轨道连接而成,圆形轨道的半径为R.一质量为m的小物块

设从高度h2处开始下滑,过圆周最低点时速度为v2,滑块在最高点与轨道间的压力是5mg,在最高点由牛顿第二定律得:5mg+mg=mv22R由机械能守恒定律得:mgh=mg•2R+12mv2联立解得:h2

如图所示,光滑圆轨道ABC,其中AB部分水平, BC部分是处于竖直平面内的半径为R的半圆管,圆管内

(1)轨道ABC光滑,小球从A运动到C,只有重力做功,故机械能守恒,设小球到C点的速度为 vC,据机械能守恒有:mv02/2=2mgR+mvC2/2,小球要能过C点,vC应不小于0,即初速度

如图所示,内壁光滑的绝缘管做在的圆环半径为R,位于竖直平面内.管的内径远小于R,以环的圆心为原点建立平面坐标系xoy,在

(1)小球恰能通过a点,小球第一次到达a点的速度为0,由动能定理有:qER-mgR=0…①故E=mgq…②(2)设第二次到达a点的速度为vn,由动能定理有:qER=12mv2a…③到达最高点时小球对轨

如图所示,竖直平面内的光滑绝缘轨道ABC,AB为倾斜直轨道,BC为圆形轨道与AB相切,问

选C、D.在最高点,甲球:mg+qvB=mV甲^2/R;乙球:mg-qvB=mV乙^2/R;丙球:mg=mV丙^2/R.可得,V甲>V丙>V乙,根据能量守恒,甲的释放位置比乙高.由于在整个过程中只有重

如图所示,位于竖直平面内的光滑轨道,由一段斜的直轨道和与之相切的圆形轨道连接而成,圆形轨道的半径为R.一质量为m的小物块

mgh=1/2mv^2v^2=2gha=v^2/R=2gh/R所以ma-mg≤5mg所以a=2gh/R≤6gh≤3R又因为ma-mg≥0所以h≥R/2所以R/2≤h≤3R

圆形光滑轨道位于竖直平面内,其半径为r,质量为m的金属小球环套在轨道上,并能 自由滑动,如图所示,以

、d过最高点时速度为零(这个是极限),能得出答案b;过最高点时速度大于根号下gR,则重力不足以提供向心力,轨道对小环有向内的支持力,即答案d再问:选B的原因是不是这个是小环,所以没有向心力也行再答:是

圆形光滑轨道位于竖直平面内,其半径为r,质量为m的金属小球环套在轨道上,并能 自由滑动,如图所示,

d再问:为什么再答:先回答选项c和d:假设小环在最高点刚好能通过,则重力充当向心力,则有mg=mv^2/r,速度v=根号下gr,若v>根号下gr,则重力比向心力小,小环需增加一个向下的力,所以轨道给小

在竖直平面内有一个半径为r的光滑圆形轨道,一个质量为m的小球

你这样想由于机械能守恒吧?在最高点,重力势能最大,动能是不是最小?速度是不是最小?所以,在运动中,球的速度V是大于等于根号下4rg/5的.时间等于路程除以速度,路程等于2πr,你把这个除以根号下4rg

半径为R的光滑圆形轨道甲固定在一竖直平面内,他的左右侧分别为光滑的

最后能经过运行轨道甲,则至少要求到最高点时,重力提供向心力,即有:mg=mv^2/Rv^2=gR对整个过程进行分析:从A点最后到轨道最高点,势能减少mg3R-mg2R=mgR摩擦力做功W=-2mguL

如图所示,位于竖直平面内的光滑轨道,由一段斜的直轨道和与之相切的圆形轨道连接而成,圆形轨道的半径为R

如图所示,位于竖直平面内的光滑轨道,由一段斜的直轨道和与之相切的圆形mgh=1/2mv^2v^2=2gha=v^2/R=2gh/R所以ma-mg≤5mg所以a=2gh再问:你在看一下,要的是范围

如图所示,位于竖直平面内的光滑轨道,由一段斜的直轨道和与之相切的圆形轨道连接而成,

没图,不过应该用能量守恒做再问:嗯,谢谢,已经百度到了

如图所示,竖直平面内固定一个半径为r的1/4光滑圆形轨道AB,底端B切线方向连接光滑水平面,c处固定竖直挡板,bc间的水

物块每次与挡板碰后速度大小都是碰前的1/5,据机械能守恒定律,第n次与挡板碰前速度的大小等于第n-1次与挡板碰后速度的大小,设第一次与挡板碰前速度为v0,据机械能守恒定律,mgr=1/2*mv0^2,

如图,在竖直平面内固定一个半径为R的1/4光滑圆形轨道AB,底端B切线方向连接光滑水平面,C处固定竖直挡板,BC间的水平

物块第一次滑到C点时速度为V=sqr(2gh) (由机械能守恒定律得到)第一次碰撞C板后反弹速度为V/5     第二次反弹后速度为V/25

如图所示,在竖直放置的光滑圆管道内,小球在竖直平面内做圆周运动.问:小球做圆周运动到达最高点时的最小速度为多大?:此时管

根据向心力公式F合=mv²/r可知当管道对小球没作用力即mg=mv²/r有最小速度V(min)=√gr此时管道对小球作用力为0N