求线性空间v= 的维数

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/10 13:51:54
下列n维向量的集合V,是否构成P上的线性空间

题目是不是这样V={(a,b,a,b,...,a,b)|a,b属于P};V是由所有(a,b,a,b,...,a,b)这样的向量构成的.再问:是的。再答:首先你要理解V的含义,即V中元素是这样的向量α=

设n是正整数,V是数域P上的一个n维线性空间,W1.W2都是V的子空间,而且它们的维数和为n,证明:

先取V的一组基{e},这样就可以用具体的坐标来描述所有的东西假定m=dim(W1),k=dim(W2)=n-m,只需讨论m和k都非零的情况,余下的是平凡的取W1的一组基,这组基在{e}下的坐标表示是一

数域P上n维线性空间V的一个线性变换A称为幂零的,如果存在一个正整数m使A^m=0,证明A是幂零变换当且仅当它的特征多项

A为幂零变换的充分必要条件是A在任意基下的矩阵A是幂零矩阵.问题转换为“A为幂零矩阵的充分必要条件是A的特征值全为0.”再问:谢谢你。再答:不客气。

证明是线性空间设V是数域F上的线性空间,W是V的一个子空间,U={σ是V的一个线性变换|σ(V)是W的子集}.证明:U关

零变化属于U所以U分非空任意σ1σ2属于U那么对于任意x属于V有σ1(x)=k1xσ2(x)=k2x所以(σ1+σ2)(x)=(k1+k2)x所以(σ1+σ2)属于U任意σ1属于Um属于F对于任意x属

急求高等代数线性空间P[X]n 的一组基和维数.

P[X]n是数域P上次数不超过n的所有多项式的集合则1,x,x^2,...,x^(n-1)是P[x]n的一组基,其维数为n.

设A为数域P上的n维线性空间V的线性变换,且A^2=A

(1)两个子空间的和是直和只需要证明它们的交只有零向量.设Y∈ker(A)∩im(A),则AY=0且存在X使Y=AX.∵A²=A,∴Y=AX=A²X=A(AX)=AY=0.即ker

求高等代数线性空间P[X]n的一组基和维数.

一组基:1,x²,x³,...,x^n所以维数是n

可交换矩阵的交换矩阵所组成的线性空间的维数和基怎么求?已知可交换矩阵.

首先,所有的对角阵之间是可交换的.齐次,任意一个矩阵A,若A可与所有的对角阵交换,可以证明A必是对角阵.而所有的对角阵的维数是n,基是第i个对角元是1,其余元素为0的对角阵,i=1,2,...,n.再

v1v2都是线性空间V的有限维子空间且V1包含于V2证明:如果dimV1=dimV2则 V1=V2

结论显然.设dimV1=dimV2=m.考虑子空间V1的一组基,设为a1,a2,……,am.由于V1包含于V2,则上述基可扩充为V2的一组基.而dimV2=m.因此上述基亦是V2的一组基.因此V1=V

在N维线性空间Pn中,下列N维向量的集合V,是否构成P上的线性空间:V={x=(a1,a2…an)|Ax=0,A∈Pm*

能构成,V是他的子空间,验证加法和数乘运算的封闭性就可以了

v是数域p上的n维线性空间,T是v的线性变换.证明,存在v的线性变换S,使得TST=T

不太会证,用矩阵的语言说明思路吧.矩阵T的等价标准型为D=【E0;00】,其中E是单位阵,阶数是T的秩,也就是变换T的像空间的维数.故存在可逆矩阵P,Q使得PTQ=D,令S=QP,则TST=P^(-1

若V表示由一切3×3上三角矩阵按照矩阵加法和数乘运算构成的线性空间,则V的维数是多少?

n×n上三角矩阵的对角线及上方共有(n^2+n)/2个元素所以V的维数是(n^2+n)/2.dim(V)=6.注:上述某个位置取1,其余位置取0.这些矩阵构成V的一个基.再问:上三角矩阵的主对角元素一

大学高等代数,关于求线性子空间的维数和基的问题

我只能告诉你方法了,因为这个过程相对比较复杂1、把这些向量作为列向量组成矩阵2、然后对其初等行变换,将其化成阶梯型矩阵(关于什么是阶梯型矩阵我想百度百科应该比我讲得详细3、然后确定的极大线性无关组就是

求线性空间的维数和易组基

公理化定义给定域F,一个线性空间即(向量空间)是个集合V并规定两个运算:向量加法:V×V→V记作v+w,∃v,w∈V,标量乘法:F×V→V记作av,∃a∈F及v∈V.符合下列公

高等代数线性空间,设v为p上的线性空间,v≠{0},v1v2是v

(证明存在向量a属于V但a不属于V1、V2中任意一个)证明:因为V1、V2互不包含且它们均V的真子空间从而必存在a1属于V1且a1不属于V2、a2属于V2且a2不属于V1现证明a1+a2不属于V1且a