正惯性指数

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/18 01:00:17
工程数学线性代数 怎么快速判断二次型的正惯性指数

顺序主子式法.第一个主子式是1,第二个是-3再问:什么意思?不明白你就判断了两个就下结论了未免太草率了吧再答:呃,不信的话你可以看书,可以用特征值法求出特征值,来判断,P.S.此矩阵为对称矩阵,特征值

n阶矩阵a是正定阵,证明a*也是 正定阵,使用正惯性指数证明.

思路:a正定则它的逆a^(-1)正定且行列式|a|>0,所以a*=|a|a^(-1)正定.再问:这个我知道,但是a-1如何证明再答:若k1,k2,...,kn是a的所以特征值,则它们的倒数是a^(-1

线性代数 证明两个矩阵合同 有些什么方法 例如此题 除了惯性指数

如果单纯判断两个矩阵的合同,主要有下列方法:(1)两实数域上的n阶对称矩阵合同的充分必要条件是它们有相同的秩和符号差;(2)两实数域上的n阶对称矩阵合同的充分必要条件是它们有相同的秩和正惯性指数;(3

证明矩阵A正定的充要条件为它的正惯性指数与秩都等于n

首先要知道结论:非退化的线性变换不改变二次型的正定性故我们不妨设A=diag(d1,d2,…,dn)设f(x1,x2,...,xn)=X^TAX=d1x1^2+.+dnxn^2.必要性因为A正定,所以

线性代数实二次型正惯性指数

10.(C).f=(x_1+x_2)^2+x_3,所以正指数是2,Kernel是1维的,负指数是0.19.2.对应于x_1和x_3.而x_2那里贡献了一个负的惯性指数.20.啊……计算.按说是要把矩阵

五阶实对称矩阵A满足A^3=A,二次型f=XTAX的正惯性指数为2,若r(A)=4,求:行列式|2A^3-I|的值.

由A是实对称矩阵,存在正交矩阵C,使B=C'AC为对角阵(C'表示C的转置).B与A相似且合同,可得A的正惯性指数=A的正特征值的个数.由A³=A,可知A的特征值满足λ³=λ,即只

惯性

解题思路:惯性解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.php?

合同变换为什么不改变矩阵的正负惯性指数

合同变换是把矩阵变为标准型的一种手段,另一种方法是配方法,还有正交变换,限定变换为实变换时,是不会改变矩阵的惯性指数的.

用正交变换求实数中的标准形,并求出所作的正交变换,求正惯性指数.

二次型的矩阵A=11-1120-100|A-λE|=1-λ1-112-λ0-10-λ=-λ^3+3λ^2-2=(1-λ)(λ^2-2λ-2).1是A的特征值,A的另两个特征值是无理数这题计算起来很麻烦

线性代数里正惯性指数的问题

F=x1^2-x1*x2-x1*x3+x2^2-x2*x3+x3^2=(x1-x2/2-x3/2)^2+(3/4)*x2^2-(3/2)*x2*x3+(3/4)*x3^2=(x1-x2/2-x3/2)

线性代数,正负惯性指数

正惯性指数2,负惯性指数是0.是这样的,你把二次型转化成一个矩阵;2,1,11,2,-11,-1,2解除这个矩阵的特征值,看特征值有几个是正数,有几个是负数,就分别对应正负惯性指数的个数.这里接的特征

正指数幂是什么意思

正指数幂指的是指数为正的幂,在有理数的区间内,指数幂都为正的.

矩阵惯性指数怎么求

化为标准形啊!也可以求特征值,特征多项式有几个正根(重根按重数计算),正惯性指数就是几.负惯性指数同样计算负根.

设二次型f(x1,x2,x3,x4)=x'Ax的正惯性指数为p=1,又矩阵A满足A^2-2A=3E,则此二次型的规范形为

因为A^2-2A=3E所以A的特征值a满足(a-3)(a+1)=0所以A的特征值只能是3或-1.又由于f的正惯性指数p=1所以A的特征值为3,-1,-1,-1所以规范型为(A).PS.事实上,由正惯性

24.设实二次型f(x1,x2,x3,x4,x5)的秩为4,正惯性指数为3,则其规范形为 .

其规范形为y1^2+y2^2+y3^2-y4^2注:二次型的秩=正惯性指数+负惯性指数再问:秩为4,就是取前4个来平方吗?再答:是.系数取正负1,正项的个数为正惯性指数

怎么证明半正定二次型的充要条件是正惯性指数等于秩,且秩小于n

半正定阵的特征值都大于等于0,非零特征值个数是秩,因此正特征值个数(就是正惯性指数)是秩.反之,正惯性指数是秩,说明没有负特征值,特征值都大于等于0,因此半正定.

高数中,正定二次型秩与正惯性指数和负惯性指数的关系是什么?

设矩阵是n*n阶正定二次型秩是满秩n,正惯性指数为n半正定二次型秩为r,(