A的秩为n-1 则线性方程组AX=0的通解

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/01 17:21:56
证明一个有解的n元非齐次线性方程组AX=b的解集合的秩为n-r(A)+1

思路:设a1,...,ar是AX=0的基础解系,c是AX=b的特解则c,c+a1,...,c+ar是非齐次线性方程组AX=b的解集合的一个极大无关组再问:证明c,c+a1,...,c+ar是极大无关组

非齐次线性方程组Ax=b中未知数的个数为n,方程个数为m,系数矩阵A的秩为r,则( ).

矩阵之间的等价关系具有以下性质1反身性A~A2对称性若A~B,则B~B3传递性若A~B,B~C,则A~C.对任何方阵A,A~E(行变换)的充分必要条件是A可逆,且当A可逆时,(A,E)~(E,A-1)

线性代数:设n元m个方程的齐次线性方程组AX=0的系数矩阵A的秩为n-1,如果矩阵A的每行的元素之和均为0,则线性方程组

系数矩阵A的秩为n-1,则AX=0的基础解系有n-r(A)=1个向量.再由A的每行的元素之和均为0知(1,1,...,1)'是AX=0的一个非零解.所以AX=0的通解是c(1,1,...,1)',c为

线性代数:设A为n阶方阵,若齐次线性方程组Ax=0只有零解则非齐次线性方程组Ax=b解的个数是?

是的如果增广矩阵(A|b)的秩r(A|b)=r(A)那么就有解不相等就无解因为r(A)=n时相应的齐次线性方程组只有非零解非齐次线性方程组就有唯一解r(A)

设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组AX=0的通解为______.

n阶矩阵A的各行元素之和均为零,说明(1,1,…,1)T(n个1的列向量)为Ax=0的一个解,由于A的秩为:n-1,从而基础解系的维度为:n-r(A),故A的基础解系的维度为1,由于(1,1,…,1)

线性代数题设n(n>=3)阶方阵A的伴随矩阵A*的秩为1,则齐次线性方程组Ax=0的基础解系所含解向量的个数为()如何证

因为r(A*)=1所以r(A)=n-1所以Ax=0的基础解系所含解向量的个数为n-r(A)=n-(n-1)=1.哪有那个结论.错的

m×n矩阵的秩为r,a1,a2,……,a(n-r+1)是非齐次线性方程组AX=B的n-r+1个线性无关的解向量,证明:a

证明:设k1(a1-a(n-r+1))+k2(a2-a(n-r+1))+……+k(n-r)(a(n-r)-a(n-r+1))=0.则k1a1+k2a2+...+k(n-r)a(n-r)+(-k1-k2

设n阶方阵A的行列式为零,则线性方程组Ax=b

D正确.若AX=b有解,则有无穷多解但也可能无解所以D正确

非其次线性方程组AX=b中未知量的个数为n,方程的个数为m,系数矩阵A的秩为r,则()

因为是非齐次线性方程组,首要问题是方程组有解非齐次线性方程组有解的充分必要条件是r(A)=r(A,b)所以(D),(C)都不对当r=m时,m>=r(A,b)>=r(A)=r=m此时方程组有解.若r=m

设n阶方阵A的秩为n-1,a1,a2,是齐次线性方程组Ax=0的两个不同的解向量,则x=0的通解为什么是k(a1-a2)

对!秩为n-1,说明方程组只有一个自由未知量,基础解系中应该只有一个向量(且是非0向量).现在a1,a2是齐次线性方程组Ax=0的两个不同的解向量,其中可能有一个为0向量,但这两个向量的差绝对不会是0

6.设n元非齐次线性方程组Ax=b的系数矩阵A的秩为n-1,a1,a2为该方程的两个解,

因为矩阵A的秩为n-1,所以齐次线性方程组AX=0的基础解系含有的向量数目为1,a1,a2为Ax=b的两个解,所以a1-a2为AX=0的一个解,若a1-a2非零,则a1-a2就是AX=0的一个基础解系

设n元非齐次线性方程组AX=B有解,其中A为(n+1)×n矩阵,则|(A|B)|=

设n元非齐次线性方程组AX=B有解,其中A为(n+1)×n矩阵,则|(A|B)|=0再问:怎么算的,为什么?再答:AX=B有解,所以A的秩等于(A|B)的秩,所以(A|B)不是满秩的。

已知m×n矩阵A的秩为n-1,α1,α2是齐次线性方程组AX=0的两个不同的解,k为任意常数,则方程组AX=0的通解为(

由m×n矩阵A的秩为n-1,知AX=0的基础解系只含有一个解向量因此,要构成基础解系的这个解向量,必须是非零向量.已知α1,α2是齐次线性方程组AX=0的两个不同的解∴α1-α2一定是AX=0的非零解

设n元齐次线性方程组Ax=0的系数矩阵A的秩为r,则Ax=0有非零解的充分必要条件是(  )

齐次线性方程组Am×nxn×1=0m×1有非零解的充分必要条件是系数矩阵的秩小于方程未知数的个数.即:r<n.故应选B.

.设A为n阶矩阵,秩(A)=n-1,,是齐次线性方程组Ax=0两个不同的解,则Ax=0的通解是

将题补全.设A为n阶矩阵,秩(A)=n-1,X1,X2是齐次线性方程组Ax=0的两个不同的解,则Ax=0的通解是kX1或kX2(要求X1或X2不等于零,即不能是零解),其中k是任意数.

线性方程组的一道问题证明:设A为m*n矩阵,AT是A的转置矩阵,则n元齐次线性方程组AX=O与ATAX=O同解

(1)如果Aa=0,那么A^TAa=A^T(Aa)=A^T*0=0,这说明AX=0的任一解a都满足A^TAX=0;(2)如果A^TAa=0,左乘A得AA^TAa=A0=0,即(AA^T)Aa=0,根据

若n元线性方程组AX=0的系数矩阵的秩为r

n元线性方程组AX=0的系数矩阵的秩为