A为n阶矩阵,且A2-A-2E=0,则A 2E

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/12 09:15:53
设A,B为n阶矩阵,且E-AB可逆,证明E-BA

E-AB可逆,则设其逆为C有(E-AB)C=E->B(E-AB)CA=BA->BCA-BABCA-BA+E=E(两边多配了一个E)->(E-BA)BCA+(E-BA)=E->(E-BA)(BCA+E)

证明题:设A为n阶矩阵,且A^2-A=2E.证明A可对角化.

这道题在不同的阶段可以有不同的方法.如果学了Jordan标准型和矩阵的最小多项式,可以用:矩阵可对角化的充要条件是其最小多项式无重根(即Jordan块都是1阶的).由A²-A=2E,知x&#

设A为n阶实对称矩阵,且满足A3+A2+A=3E,证明A是正定矩阵.

假设 λ 为A的特征值,因为A3+A2+A=3E,所以 λ3+λ2+λ-3=0.即 (λ3-1)+(λ2-1)+(λ-1)=0,得(λ-1)(λ2+2λ+3)=0.解得,

设A为n阶方阵,且A2=A,证明:若A的秩为r,则A-E的秩为n-r,其中E是n阶单位矩阵.

因为:A2=A,所以:A(A-E)=0,则:r(A)+r(A-E)≤n,又因为:r(A)+r(A-E)=r(A)+r(E-A)≥r(A+E-A)=r(E)=n,所以:r(A)+r(A-E)=n,则:r

已知A,B均为N阶矩阵,且A2-AB=E,证明R(AB-BA-A)=N

∵A(A-B)=A²-AB=E.∴A可逆,且A^(-1)=A-B,即有B=A-A^(-1).∴BA=A²-E=AB,则AB-BA+A=A.又∵A为N阶可逆矩阵,∴r(AB-BA+A

1.A为n阶矩阵,且A^2-2A-E=0,求(A+3E)^-1

1.A^2-2A-E=A^2-2A-15E+14E=(A+3E)(A-5E)+14E=0所以:(A+3E)*[(A-5E)/(-14)]=EA+3E)^-1=(A-5E)/(-14),即(5E-A)/

设A是N阶方阵,若A2=A,且A不等于E,证A不是可逆矩阵

反证法若A是可逆矩阵,则A×A逆=EA=A×A×A逆=A×A逆=E矛盾

设A为n阶矩阵,且A不是零矩阵,且存在正整数k≥2,使A^k=0,证明:E-A可逆,且(E-A)=E+A+A^2+……A

由性质直接证明因为(E-A)(E+A+A^2+……+A^(k-1))=E+A+A^2+……+A^(k-1)-A-A^2-……-A^(k-1)-A^k=E-A^k=E所以E-A可逆,且(E-A)^(-1

A,B为n阶矩阵且A+B=E,证明AB=BA

A(A+B)=AA+AB(A+B)A=AA+BAAA+AB=A=AA+BA所以AB=BA

设A为4阶矩阵,且1,2,3,4为矩阵A的特征值,求2A2+3A+E的行列式

A的全部特征值为1,2,3,4所以2A^2+3A+E的特征值为5,11,19,29所以|2A^2+3A+E|=30305.注:若λ是A的特征值,则f(λ)是f(A)的特征值.这里f(x)=x^2+3*

设A,B为n阶矩阵且A+B=E,证明:AB=BA

AB=A(E-A)=A-AABA=(E-A)A=A-AA所以AB=BA

A为n阶矩阵,且A^2-A=2E,证明A可以对角化

很显然,因为极小多项式没有重根.再问:能不能给点过程,根就只有2,-1~n阶还有其他根呢,为0,不算重根?再答:不管n多大,A的特征值只能是2或-1,没有别的根。A的极小多项式是x^2-x-2的因子,

设A,B为N阶方阵,E为单位矩阵,a1,a2,.an,为B的N个特征值,且存在可逆矩阵P使B=PAP^(-1)-p^(-

因为[(P^2)]^(-1)[PAP^(-1)]P^2=P^(-1)AP所以PAP^(-1)与P^(-1)AP相似故它们有相同的迹(即对角线元素之和)所以a1+a2+.+an=tr(PAP^(-1)-

27.设n阶矩阵A满足A2=A,证明E-2A可逆,且(E-2A)-1=E-2A.

要证明E-2A可逆我们可以假设其可逆,并设其逆为aE+bA则(E-2A)(aE+bA)=E那么aE+(b-2a)A-2bA^2=E又A^2=A那么(a-1)E-(b+2a)A=0所以a-1=0,b+2

A为n*n阶矩阵,且A^2-3A+2E=0,则A ^-1=?

由题意A^2-3A+2E=0即A^2-3A=-2EA^2-3AE=-2EA(A-3E)=-2EA(A-3E)/(-2)=EA(-A+3E)/2=E所以A可逆,且其逆阵为(-A+3E)/2

已知n阶矩阵A满足矩阵方程A^2-2A-3E=0,且A-E可逆,求A-E的逆矩阵?

因为A^2-2A-3E=0所以A(A-E)-(A-E)-4E=0所以(A-E)^2=4E所以A-E可逆,且(A-E)^-1=(1/4)(A-E).

设A为n阶实对称矩阵,且满足A^3-2A^2+4A-3E=O,证明A为正定矩阵

设λ是A的特征值则λ^3-2λ^2+4λ-3是A^3-2A^2+4A-3E的特征值而A^3-2A^2+4A-3E=0,零矩阵的特征值只能是0所以λ^3-2λ^2+4λ-3=0.λ^3-2λ^2+4λ-

设A,B为n阶矩阵,且A与B相似,E为n阶单位矩阵,则(  )

(1)对于选项A.若λE-A=λE-B,则:A=B,但题目仅仅是A与B相似,并不能推出A=B,故A错误;(2)对于选项B.相似的矩阵具有相同的特征值,这个是相似矩阵的性质,这是由它们的特征多项式相同决

已知A为n阶矩阵,且A^2=A; 求(A-2E)^-1

(A-2E)(A+E)=A^2-A-2E而A^2=A,所以(A-2E)(A+E)=-2E即(A-2E)(-A/2-E/2)=E这样就可以由逆矩阵的定义知道,A-2E的逆矩阵为-A/2-E/2即(A-2