微分方程y-2xy 3y=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/13 04:44:56
解微分方程y"+y'=x^2

e^x(y''+y')=x^2e^x(y'e^x)'=x^2e^x两边积分:y'e^x=∫x^2e^xdx=x^2e^x-∫e^x*2xdx=x^2e^x-2xe^x+2∫e^xdx=x^2e^x-2

常微分方程 解dy/dx + y - x^2=0

y'+y=x²这是一阶线性微分方程,设u=u(x),使方程左边=d(uy)/dxuy'+uy=x²则由于乘法法则u'=du/dx=u分离变量积分du/u=dxu=e^x(ye^x)

求微分方程y"-2y'+y=0的通解.

你这个是二阶常系数齐次线性微分方程属于r1=r2=1的情况代入公式,y=(C1+C2x)e^(r1x)=(C1+C2x)e^x好好看看书,公式要记得!

微分方程 y”-y=0的通解

特征函数r²-1=0r=1或-1那么y=C1e^x+C2e^(-x)C1C2常数

微分方程y'+y=0的通解

dy/dx=-ydy/y=-dx积分:ln|y|=-x+C1得y=C/e^x

微分方程(x+y^2)dx-xydy=0

设u=y/xdy/dx=(x+y²)/xyu+xdu/dx=1/xu+uudu=1/x²dx1/2u²=-1/x+Cy²=2Cx²-2x希望能帮道楼主

微分方程y''=3√y,x=0,y=1,y'=2

再答:诚邀您加入百度知道团队“驾驭世界的数学”。

微分方程e^(y^2+x)dx+ydy=0

∵e^(y^2+x)dx+ydy=0==>e^(y^2)*e^xdx=-ydy==>-2ye^(-y^2)dy=2e^xdx==>e^(-y^2)d(-y^2)=2e^xdx==>e^(-y^2)=2

微分方程y''+2y'=0的通解

首先,可以列出式子:r^2+2r=0,然后就可以解得:r1=0,r2=-2.高数书上应该有写,在这个情况下,y=C1e^r1+C2e^r2所以这里把r1和r2代入就可以啦~就是:y=C1+C2*e^(

1.微分方程y'=2X+1的通解是?2.微分方程y'-2y=0的通解是?

1、dy=(2x+1)dx,y=x^2+x+C,2、dy/y=2dx,lny=2x+lnC1,y=e^(2x+lnC1),y=C*e^(2x).

xy'+y-2y^3=0微分方程的解?

伯努利方程xy'+y=2y^3->x/y^3*y'+1/y^2=2令1/y^2=t-x/2*dt/dx+t=2解这个一阶方程得(2x^(-2)+c)*x^2

求微分方程y''+y'-2y=0 的通解.

设y=e^ax带入y''+y'-2y=0求导化简得a^2+a-2=0(a-1)(a+2)=0a=1,a=-2通解为y=e^x+e^-2x+c

微分方程y''+2y'-3y=0通解

齐次方程:r^2+2r-3=0r=-3orr=1通解为C1e^(-3x)+C2e^x

求微分方程y"-y'-2y=0的通解

特征方程为r²-r-2=0解得r1=2,若=-1∴原方程的通解为:y=C1e^(2x)+C2e^(-x)

微分方程y"+y'+2y=0的通解

对应的特征方程是a^2+a+2=0,解得a是α±iβ的形式的,那么通解就是c1*e^(αx)*sin(βx)+c2*e^(αx)*cos(βx)

y''+y'-2y=0求微分方程通解

其特征方程是z^2+z-2=0解得特征根为z1=1,z2=2于是微分方程的通解为:y=C1*exp(z1*x)+C2*exp(z2*x)=C1*exp(x)+C2*exp(2x)像这种题,你得达到能口

求解微分方程 2ydx+(y^3-x)dy=0

2ydx+(y^3-x)dy=0dx/dy-(1/2y)x=-y^2/2,这是一阶线性方程,由通解公式:e^∫(1/2y)dy=√yx=√y(C+∫[(-y^2/2)/√y]dy)=√y(C-(1/5

高数中微分方程求解求微分方程y'cos^2x+y-tanx=0的通解

方程化为y'+1/cos^2x*y=tanx/cos^2x∫dx/cos^2x=tanx∫-dx/cos^2x=-tanxe^(∫dx/cos^2x)=e^(tanx)e^(∫-dx/cos^2x)=

求微分方程通解.y''+y'-2y=0

特征方程r^2+r-2=0推出(r+2)(r-1)=0解方程得r1=-2,r2=1则微分方程的同通解为y=C1*e^(-2)+C2*e^1(C1,C2为常数)