已知对给定的方阵A,存在正整数k使A的k次方等于0,试证E A可逆

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/14 04:18:42
对数列极限概念的疑问书上写的数列极限的定义:有一数列{an},如果存在常数a,对于任意给定的正数Э,总存在正整数N,当n

有一数列{an},如果存在常数a,对于任意给定的正数Э,总存在正整数N,当n>N时,|an-a|

对任一n阶实方阵A,给定n阶实方阵C定义如下;T(A)=CA-AC;证明(1) T是R(n*n)维空间的线性变换,

(1)线性变换T(a+b)=T(a)+T(b)C(a+b)-(a+b)C=Ca-aC+Cb-bC,且T(ka)=kT(a)C(ka)-(ka)C=kCa-kaC.所以,T是R的线性变换.(2)T(AB

对于数列极限来说,若存在任意给定的ε,无论其多么小,总存在正整数N.

ε是个希腊字母,就像英文字母的x,y,z我尝试把这句话说得更明白一点儿吧:若对于任意给定(给定之前,它不一定是多少,但给定之后就不许变了)的正实数(我们下面把这个正实数取个名字,叫做ε),无论ε多么小

数列极限定义数列如果存在常数a,对于任意的给定的正数ε,总存在正整数N,使得n>N时,不等式 │Xn-a │N?完全没有

n表示第几项,N是和ε有关的一个自然数,也就是说,无论你选取多小的正数ε,当到一定项数N以后,X(n)和它极限的差的绝对值都小于ε

对任意给定的ε∈(0,1),总存在正整数N,当n>N时,恒有|x{n}-a|≤2ε是数列{x{n}}收敛于a的( 什么条

对任意给定的ε∈(0,1),总存在正整数N,当n>N时,恒有|x{n}-a|≤2ε是数列{x{n}}收敛于a的充要条件.

数列极限 数列极限 设为一数列,如果存在常数a,对于任意给定的正数ε (不论它多么小),总存在正整数N,使得当n>N时,

这个就是极限的定义,总存在正整数N,使得当n>N时,这个是很有意义的,就是说无论多么小的数ε,我都能找到一个正整数N,使得n>N时,Xn与a的距离总小于ε,就是说这个序列从N开始后的每一项都离a非常近

A为n阶方阵,证明:若存在正整数k使A^k=0,则A的特征值只能是0

需两个知识点:1.零矩阵的特征值只有零2.若λ是A的特征值,g(x)是x的多项式,则g(λ)是g(A)的特征值本题目的证明:设λ是A的特征值,则λ^k是A^k的特征值因为A^k=0,而零矩阵的特征值只

证明题 设方阵A满足A的k次方等於0 对某个正整数k成立 证明:A的特征值一定为0

证明:设λ是A的特征值则λ^k是A^k的特征值(这是定理)而A^k=0,零矩阵的特征值只能是0所以λ^k=0所以λ=0即A的特征值一定为0.

急求证线性代数一题!给定一个方阵A,求证存在一个多项式f(x),使f(A)=0.注:这题出现在线性变换的练习中.

写出方程|A-xE|=0,其中b是系数,E是单位矩阵,左边行列式展开是多项式,把这个多项式记做f(x),即所求(这是一个定理,证明难度很大,这里就不证了)

设A为n阶方阵,且对某个正整数m,有A的m次方=0,证明E-A可逆,并求其逆

这类求证一个已知矩阵式另一个已知矩阵的逆矩阵的题型思路是证明它们的乘积等于单位阵请见下图

已知对给定的方阵A,存在正整数k使A的k次方等于0,试证E-A可逆,并求出E-A的逆矩阵.

因为A^k=0所以(E-A)(E+A+A^2+...+A^(k-1))=E+A+A^2+...+A^(k-1)-A-A^2-...-A^(k-1)-A^k=E-A^k=E所以E-A可逆,且(E-A)^

证明:若n阶方阵A的特征值全是0,则存在正整数k,使得A^k=0

设a是特征值,对应的特征向量为x,即Ax=ax,左乘A得A^2x=aAx=a^2x,继续递推下去有A^kx=a^kx,即a^k是A^k(=0)的特征值,因为a=0,所以A^k=a^k=0

已知关于x的一元二次方程x^2-ax+a+5=0 若a为正整数,且该方程存在正整数解,求所有正整数

方程化为:a(x-1)=x^2+5令t=x-1,则x=t+1,t>=0为整数代入上式;ta=(t+1)^2+5ta=t^2+2t+6t显然不为0,否则上式0=6,不成立a=t+6/t+2因此t须为6的

(2012•蓝山县模拟)已知m是一个给定的正整数,如果两个整数a,b被m除得的余数相同,则称a与b对模m同余,记作a≡b

由题意,22010=8670=(7+1)670=C0670×7670+…+C669670×7+C670670∴22010≡1(mod7),∵2010=7×287+1∴2010≡1(mod7),∴r可以

设A是每行每列均含有一个1和三个0的4级方阵,求证:存在一个正整数m使得A^m=E,这

注意A的列实际上就是单位阵的4个列向量的一个排列而已,也就是说Ae1=ej1,Ae2=ej2,...,Aen=ejn,其中e1e2...,e4是单位阵的4个列.因此存在整数k1使得A^(k1)e1=e

若存在正整数m,使得A^m=E,这里的E为单位矩阵,A为n阶方阵,证明A相似于对角型矩阵

"因为最小多项式肯定整除x^m-1,那么最小多项式没有重根,那么可对角化"对的也可以直接讨论Jordan块,因为J^m是可以具体算出来的再答:我这里写的J代表一个Jordan块

已知对给定的方阵A,存在正整数k使A的k次方等于0,试证E+A可逆

设a是A的特征值则a^k是A^k的特征值因为A^k=0,而零矩阵的特征值只能是0所以a^k=0所以a=0.故A的特征值为0,...,0所以A+E的特征值为1,...,1所以|A+E|=1故A+E可逆.

证明:对于任意给定的正整数n,存在n项的等差正整数列,它们中的项两两互质

设这n个数为a1,a2,a3...an取am=(m-1)×n!+1(1≤m≤n)那么数列{am}是首项为1,公差为n!的等差数列其中任意两个数ap,aq(1≤p(ap,aq)=(aq-ap,ap)=(

收敛的条件判断“对任意给定的数e属于(0,1),总存在正整数N,当n大于等于N时,恒有|Xn-a|小于等于2e”是数列{

选C这和数列收敛的定义是等价的.在书上的定义中是对所有e>0,但这里我们并不关心大的e,而只关心在0的某个右邻域中的e.比如说,若当e=0.5,我们存在正整数N,当n大于等于N时,恒有|Xn-a|