已知向量组a1 a2 a3 a4线性无关,则下列向量组线性无关的是
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 03:27:01
证明:设:k1(a1+2a2)+k2(2a2+3a3)+k3(3a3+a1)=0整理得:(k1+k3)a1+(2k1+2k2)a2+(3k2+3k3)a3=0∵a1,a2,a3线性无关∴k1+k3=0
Isuppose:"向量组a1a2a3a5的秩为4"insteadof:"向量组a1a2a3a4的秩为4"向量组a1a2a3a5的秩为4=>a1,a2,a3,a5线性无关a1a2a3a4线性相关=>a
(b1,b2,b3)=(a1,a2,a3)KK=101220033因为|K|=12≠0所以K可逆所以r(b1,b2,b3)=r(a1,a2,a3)=3所以b1,b2,b3线性无关.怎么让证线性相关呢?
设k1(a1+a2)+k2(a2+a3)+k3(a3+a4)+k4(a4-a1)=0整理后得到(k1-k4)a1+(k1+k2)a2+(k2+k3)a3+(k3+k4)a4=0由于a1,a2,a3,a
k1*a1+k2(a1+a2)+k3(a1+a2+a3)+...+ks(a1+a2+...+as)=(k1+k2+..+ks)a1+(k2+k3+...+ks)a2+...+ks*as=0因为a1,a
可参考:http://zhidao.baidu.com/question/280278707.html
证明:令k1(a1+a2)+k2(a2+a3)+k3(a3+a1)=0(k1+k3)a1+(k1+k2)a2+(k2+k3)a3=0因为向量组a1,a2,a3线性无关所以k1+k3=0k1+k2=0k
看向量组构成的矩阵是不是满秩的,满秩说明线性无关,不满秩则线性相关利用初等变换求矩阵的秩.1.(-121)(101)(314)-->(011)秩为2(011/20)秩为3,线性无关(002)(002)
a1,a2,a3,a4线性相关则存在x1,x2,x3使得a4=x1a1+x2a2+x3a3.(1)a1,a2,a3,a5线性相关则存在y1,y2,y3使得a5=y1a1+y2a2+y3a3.(2)(2
假设:a1+a2、a2+a3、a3+a1是线性相关的,则:a3+a1=m(a1+a2)+n(a2+a3)(m-1)a1+(m+n)a2+(n-1)a3=0因a1、a2、a3线性无关,则:m-1=0且m
仅供参考若向量组a1,a2,a3线性无关则满足k1*a1+k2*a2+k3*a3=0的充要条件为k1=k2=k3=0例如E=a1+2a2,a3设未知量p1,p2p1(a1+2a2)+p2*a3=0换成
对于向量组a1,a2,a3要线性相关,则k1*a1+k2*a2+k3*a3=0(其中k1,k3,k3不全为零)只要符合上式,就不是线性相关,而是线性无关例如A中的向量组k1*a1+k2*(3a3)+k
(b1,b2,b3,b4)=r(a1,a1-a2,a1-a2-a3,a1-a2-a3-a4)=r(a1,-a2,-a2-a3,-a2-a3-a4)=r(a1,a2,a3,a4)=4,所以b1,b2,b
(a1+a2,a2+a3,λa1+a3)=(a1,a2,a3)KK=10λ110011|K|=1+λ由已知r(K)=r(a1+a2,a2+a3,λa1+a3)=3所以λ≠-1.再问:那个行列式是怎么得
设b4=k1*b1+k2*b2+k3*b3k1,k2,k3属于F=k1(a1+a2)+k2(a2+a3)+k3(a3+a4)=k1a1+k3a4+a2(k1+k2)+a3(k2+k3)=a1+a4则k
3-2r1,r4-r1112202150-2-1-500-22r3+r211220215000000-22r1+r4,r4*(-1/2),r2-r4110402060000001-1r2*(1/2),
A假设a1+a2,a2+a3,a3+a4,a4+a1线性相关,则存在不全为零的k1、k2、k3、k4,使得k1(a1+a2)+k2(a2+a3)+k3(a3+a4)+k4(a4+a1)=0即(k1+k
用定义设k1(a1+a2)+k2(3a2+2a3)+k3(a1-2a2+a3)=0重新分组:a1(k1+k3)+a2(k1+3k2-2k3)+a3(2k2+k3)=0因为a1,a2,a3线性无关,所以
且r(a1,a2,a3)=2r(a2,a3,a4)