如图所示,t=0时,质量为1kg的物体从光滑斜面上的A点

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/14 15:57:32
如图所示,质量为m的小物块放在长直水平面上,用水平细线紧绕在半径为R、质量为2m的薄壁圆筒上.t=0时刻,圆筒在电动机带

第二问中根本跟你走的路程没关系,你算那个路程x干什么呢?另外路程的话,应该是按照筒上某点转动的距离来算的,这个点,是做的曲线圆周运动,并不是直线运动,所以你用从0开始的直线匀加速运动的公式是不对的,应

如图所示,两个小物块A和B紧挨着静止在水平面上,已知A的质量为mA=1kg,b的质量为mB=2k,A与水平面间的动摩擦因

以整体为研究对象,因为B不受摩擦力,故整体所受摩擦力f=μmAg,根据牛顿第二定律有:水平方向:Fcosθ-f=(mA+mB)af=μmAg=0.5×1×10N=5N整体加速度为:a=Fcos37°−

当函数t=k·x^k^2-2k-1是反比例函数,则k的值为

∵该函数是反比例函数∴t=k/x∴x^k^2-2k-1=x^-1=1/x∴k^2-2k-1=-1k^2-2k=0k(k-2)=0k1=0,k2=2∵k≠0∴k=2

如图所示,质量M=3.0kg的平板小车静止在光滑水平面上,当t=0时,两个质量均为m=1.0kg的小物体A和B(均可视为

小题1:0.40m/s方向水平向右小题2:4.8m小题3:(1)设A、B在车上停止滑动时,车的速度为v,根据动量守恒定律有:……………………………………………………………………(2分)解得 

如图所示,劲度系数为k的弹簧A上端固定在天花板上,下端系一质量为M的物体,M的下面用一能承受最大拉力T=1.5mg的细线

当m具有向上的加速度时,处于超重状态,故在最低点时细线的拉力最大;平衡位置弹簧的伸长量:x1=(M+m)gk物体m处于最低点时,弹簧的弹力最大,加速度为:a=T−mgm=1.5mg−mgm=12g此时

一道有关电场的题目两个平行金属板相距为D,长均为L,将如图所示变化的电压加在两金属板上.当t=0时.质量为m,电荷量为e

首先电子全过程(如果没有撞到板上的话~~)水平速度保持v(因为电场垂直金属板,对电子只会产生竖直方向上的加速度)第一问,要求电子出射速度方向平行于金属板,也就是说电子竖直方向上速度为0,由于一个周期内

如图,已知小球质量为m,重力加速度为g,弹簧劲度系数为k,以下为正方向,球刚置于弹簧上时t=0,x(0)=0

你既然问这个问题 想必也是学过微积分的.对x(t)求时间t的导数可以得速度函数v(t) 对速度函数v(t)求时间t的导数可得加速度函数a(t)小球受到的合力F(t)=m*a(t)=

(2006•淮北模拟)如图所示,质量为M=4kg的小车可以在光滑的水平轨道上滑动,用轻细线在小车上吊着一个质量为m=1k

(1)当物体获得初速度后,在拉力的作用下,小车向右做加速运动,物体做减速运动.当物体与小车在水平方向速度相等时,物体上升的高度最高.设共同速度为V,上升的高度为H.对物体与小车组成的系统,利用水平方向

质量为1kg的物体静止在光滑水平面上,从t=0时刻开始受到水平力F的作用.力F与时间t的关系如图所示,则此物体(  )

A、物体静止在光滑水平面上,水平力F即为物体的合力,在0-1s内,水平力F对物体做正功,1s末,力F反向,在1-2s内,水平力F对物体做负功,根据动能定理得前2s内动能先增后减.在0-1s内,物体加速

(2005•佛山模拟)质量为M=0.3kg的平板小车静止在光滑水平面上,如图所示.当t=0时,两个质量都是m=0.1kg

(1)设A、B相对于车停止滑动时,车的速度为v,根据动量守恒定律得:m(v1-v2)=(M+2m)v,解得,v=0.40m/s,方向向右.(2)设A、B在车上相对于车滑动的距离分别为L1和L2,由功能

质量为M=0.3kg的平板小车静止在光滑水平面上,如图所示.当t=0时,两个质量都是m=0.1kg的小滑块A和B,分别从

(1)设A、B相对于车停止滑动时,车的速度为v,根据动量守恒定律得:m(v1-v2)=(M+2m)v,解得,v=0.40m/s,方向向右.(2)设A、B在车上相对于车滑动的距离分别为L1和L2,由功能

热力学温标K,以-273.15摄氏度为0点,为什么1K=1摄氏度,且0点不同,热力学温标K和热力学温度T有什么不同?

楼主的问题表述中有一处错误,K是热力学温度的单位,而不是热力学温标本身.所谓的温标就是如何定量表示温度.热力学温标的定义是建立在热力学第二定律的基础上的,如果是中学生不需掌握热力学温标的定义(涉及到比

质量为M=4.0kg的平板小车静止在光滑的水平面上,如图所示,当t=0时,两个质量分别为mA=2kg、mB=1kg的小物

(1)全过程,对系统,由动量守恒,令向右为正:mAv0-mBv0=(M+mA+mB)v′整体共同的速度为v′=1m/s       

一电荷量为q(q>0)、质量为m的带电粒子在匀强电场的作用下,在t=0时由静止开始运动,场强随时间变化的规律如图所示.不

粒子在0~T4、T4~T2、T2~3T4、3T4~T时间间隔内做匀变速运动,设加速度分别为a1、a2、a3、a4,由牛顿第二定律得qE0=ma1、2qE0=-ma2、2qE0=ma3、qE0=-ma4

(2013•南宁三模)如图甲所示,质量为M=3.0kg的平板小车C净止在光滑的水平面上,在t=0时,两个质量均为1.0k

(1)由v-t图可知,在第1s内,A、B的加速度大小相等,均为:a=2m/s2.根据牛顿第二定律得:物体A、B所受的摩擦力均为f=ma=1×2N=2N,方向相反.根据牛顿第三定律,车C受到A、B的摩擦

(2012•南宁一模)质量M=0.6kg的平板小车静止在光滑水面上,如图所示,当t=0时,两个质量都为m=0.2kg的小

(1)设物体A、B相对于车停止滑动时,车速为v,根据动量守恒定律有:m(v1-v2)=(M+2m)v代入数据解得:v=0.6m/s,方向向右.(2)设物体A、B在车上相对于车滑动的距离分别为L1、L2

(2012•新余模拟)质量M=0.6kg的平板小车静止在光滑水面上,如图所示,当t=0时,两个质量都为m=0.2kg的小

(1)设物体A、B相对于车停止滑动时,车速为v,根据动量守恒定律有:m(v1-v2)=(M+2m)v代入数据解得:v=0.6m/s,方向向右.(2)设物体A、B在车上相对于车滑动的距离分别为L1、L2

10、以下程序段运行时语句k=k+1执行次数为()次.k=-20 do while (k=0) k=k+1 loo

开始循环检查k=-20,不满足k=0,直接退出循环,也就没执行过