如图,在棱长为2的正四面体中,e.f.分别为ab.cd动点

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/11 19:59:26
如图,在正四面体S-ABC中,D为SC的中点,求BD与SA所成角的余弦值

取AC中点为E,则DE//SA,SA与BD成的角等于角EDB,假设正四面体的棱长为2,则DE=1,BE=BD=根号3,角BDE的余弦等于0.5/根号3=(根号3)/6.

已知正四面体的棱长为根号3,求外接球和正四面体的体积

外接球R=4分之(3乘以根号2)正四面体体积=4分之根6

如图,正四面体ABCD的棱长为6,P,Q分别是AC的中点、AD的三分之一点,

1:5.S△APQ:S四边形PQCD=上下体积比(高相同),S△=(1/6)*S△ACD(用公式S=ab*sinC/2.)

数学空间角计算在棱长为2的正四面体A-BCD中,①求A到平面BCD的距离;②求其体积;③求直线AB与平面所成角的正眩④求

过A做面BCD的垂线交于点E,连结BE,过E做BC的垂线交于点F,连结AF.F为BC中点,∠EBF=301、点A到面BCD距离:2√6/32、体积:2√2/33、正弦:sin∠ABE=√6/34、余弦

在棱长为1的正四面体ABCD中,E为AD的中点,试求CE与面BCD所成的角

设F为BC的中点,G为E在平面BCD上的垂足.sin∠EFD=(1/2)/(√3/2)=1/√3.cos∠EFD=√(2/3).EF=FD×cos∠EFD=(√3/2)×√(2/3)=1/√2.FG=

在棱长为1的正四面体ABCD中,E和F分别是AD和BC的中点,求AF和CE距离

比较基本,理解了空间直线间的距离的定义就容易了再问:算起来很麻烦啊再答:计算量还是有的。

在棱长为1的正四面体ABCD中,E是BC的中点,则向量AE*向量CD=

(1)E是BC的中点∴2向量AE=向量AB+向量AC∴2向量AE.向量CD=(向量AB+向量AC).(向量AD-向量AC)=向量AB.向量AD-向量AB.向量AC+向量AC.向量AD-AC²

如图,已知棱长为1正四面体OABC中,E,F分别为AB,OC的中点求OE与BF所成的角的余弦值

连接EC,取EC的中点为M,连接FM,BM,则角BFM即为所求.三角形BFM三边易求,最后求得角BFM的余弦值是2/3.

正四面体的棱长为1,球O与正四面体的各棱均相切,且O在正四面体的内部,球O的表面积为()

选择题有自己特殊的解答技巧贴主不用在上面过于耽误时间,这道题最好的方法是;首先求出正四面体的表面积,也就是4*(1/2)*((根号下3)/2)=根号下3,球和他相切可见要小于根号下3=1.732,所以

棱长为1的正四面体在平面上的射影面积最大是多少?

在特殊情况下,投影图形为梯形时,梯形面积总是小于正方形面积.只有当梯形的上底跟下底相等时(已经不是梯形,这时也成了正方形),都为√2/2,它的面积最大,也为1/2.

在棱长为a的正四面体中,相对两条棱所成角的大小为

呵呵我刚才刚好做了一道题是证明这两条棱垂直的相对两条棱所成角的大小为90°证明如下过A在面BCD作投影点A'连接AA',BA'由于是正四面体,延长CA'交CD于F点,即CD中点BCD为正三角形所以BF

棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如图,则图中三角形(正四面体的截面)的面积是(  )

棱长为2的正四面体ABCD的四个顶点都在同一个球面上,若过该球球心的一个截面如图为△ABF,则图中AB=2,E为AB中点,则EF⊥DC,在△DCE中,DE=EC=3,DC=2,∴EF=2,∴三角形AB

棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如图,则图中三角形(正四面体的截面)的面积是____

/>再问:为啥截面是△ABD再答:答案是这么写再问:亲,我需要的不是答案,是解题思路,我也有答案的

已知正四面体ABCD的棱长为a,求此正四面体地高及体积.

正四面体重心到三角形顶点距离为2/3*(根号3/2)*a=根号3/3*a正四面体h=根号[a^2-(根号3/3*a)^2]=根号6/3*a底面正三角形面积S=根号3/4*a^2体积V=S*h/3=(根

如图,已知棱长为3的正四面体,E,F是棱AB,AC上的点,且AF=2FC,BE=2AE.求四面体AEFD的内切球的体积

先求出正四面体体积,作高DH,H为正三角形ABC的外心(重心),连结BH,延长交AC于Q,设棱长为a,BQ=√3a/2,BH=2BQ/3=√3a/3,DH=√(AD^2-BH^2)=√6a/3,VD-

在平面上,若两个正三角形的边长之比1:2,则它们的面积之比为1:4,类似地,在空间中,若两个正四面体的棱长之比为1:2,

平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,由平面图形面积类比立体图形的体积,得出:在空间内,若两个正四面体的棱长的比为1:2,则它们的底面积之比为1:4,对应高之比为1