在三角形中以ab为直径的圆心o
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 03:28:08
证明:连接BD,设AE与OC交于F,DE与BC交于G则在三角形AFO和三角形DGB中角FAO=角GDB(都是弧EB对的圆周角)又因为角AOF=2*角ABC且同弦CD垂直于直径AB易知角ABC=角ABD
∵OD//AB,∴〈COD=〈A,(同位角相等),〈EOD=〈OEA,(内错角相等),∵OA=OE=R,∴三角形OAE是等腰三角形,则〈A=〈OEA,则〈COD=〈EOD,∵CO=OE=R,OD=OD
连接OBOD垂直AB,BC垂直AC,OD=OC直角三角形ODB全等于直角三角形OCBDB=BC=6在直角三角形ADO中,AO=8-R(8-R)平方=R平方X(10-6)平方R=3
联OD,BD.有角BDA=角BDC=角ABC=角ODE=90度.那么角ODB=角EDC——》角ODB=角ODE-角BDE=90度-角BDE=角EDC角ABD=角C.——》看三角形ABD和ABC易得.=
相切的.依题三角形ABC为等腰三角形,则AO垂直于BC,所以三角形AOB和AOC及圆O关于AO对称,所以相切
BD与圆O相切证明:连结ODOA=OD∴∠A=∠ODA∵∠CBD=∠A∴∠ODA=∠CBD∵∠CDB+∠CBD=90°∴∠CDB+∠ODA=90°∴∠ODB=90°∵OD是圆O的半径∴DB与圆O相切2
观察图形,发现:阴影部分的面积是两半圆面积差的一半,即S阴影=12(S大圆-S小圆)=12(π×32-π×12)=4π.
(1)方法一:以O为原点,AB、OD所在直线分别为x轴、y轴建立平面直角坐标系,则点A(-2,0),B(2,0),P(3,1).设双曲线实半轴长为a,虚半轴长为b,半焦距为c,则2a=|PA|−|PB
因为ABDE为圆内接四边形,因此对角互补(如果需要证明请提示)则∠A+∠BDE=180.因为∠CDE+∠BDE=180所以,∠A=∠CDE又,∠C=∠C.所以△ABC∽△DECAB=AC=5,所以DE
根据题意已知:OD=3CM,OA=OB=7CM, AB=AC△BOD是直角三角形.BD²=BO²-OD²=7²+3
记AE于OC相交于点F,DE于BC相交于点G连接AC,BD因为角CAO与角CDB对应的弧同为弧CB所以角CAO=角CDB因为OA=OC所以角CAO=角ACO因为弦CD垂直于直径AB所以BD=BC所以角
连接OM,因为M为切点,所以OM垂直AC,又因为AB垂直BC,角c=角c,所以三角形ABC相似于三角形OMC,OM=OB=OD=a/2,AB=a,再依据三角形相似定律可以求出D为OC的中点.可得证1再
∵BD=CE∴弧bd=弧ce∴弧bde=弧ced∴∠B=∠C∴AB=AC同圆或等圆中,弦相等,对应的圆心角相等,弧相等,圆周角相等弧BD=弧CE加上公共弧DE就得到弧BDE=弧CED同弧所对圆周角相等
(2)连接DE,则角ADE=90度,角OED=角ODE=90度-角BAC,BD=BC,角BDC=角BCA=90度-角BAC,所以角OED=角ODE=角BDC=角BCA,故角EOD=角DBC,△EOD∽
连接OD、DE有AD⊥DEDE‖BC且有角OAD=ODA已知角OAD=CBD则有OAD=ODA=CBD=EDB而角ODE=OED且OAD+OED=90度因此有ODE+EDB=90度OD垂直BDBD为圆
作AH垂直CD于H.∠D=60°,则∠DAH=30°,DH=AD/2=m/2.(直角三角形中30度的内角所对直角边等斜边一半)所以,AH=√(AD^2-DH^2)=(√3/2)m.即圆心O到CD的距离
如图,因为AB为直径,所以角ADC等于90°(圆周角所对的弦为直径),所以要想两个三角形全等,则加AB=AC或者角B=角C其中一个条件即可
AE=OE=AO三角形AOE为正三角形,角AOE=60度,角COE=30度,角FOE=120度则AE,CE,EF分别是圆O的内接六边形,正十二边形,正三角形的一边
(1)BC所在直线与小圆相切过O作OF⊥BC在直角△ACO和直角△OCF中,∠AC0=∠FCO,∴AO=FO又AO为半径,所以F在小圆上,所以直线BC外切于小圆(2)关系:BC=AD+AC在直角△AC