圆弧轨道与水平面光滑接触,一物体自轨道顶端滑下,M与m间有摩擦,则

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/16 16:03:13
如图所示,一水平面与一光滑的半径为R=0.5米的竖直半圆弧道平滑连接.在水平面与圆弧的连接处放置一质量为1.0kg的小物

1)用机械能守恒就可以了:2mg2R=0.5×2mv^2易求v=2√5m/s^22)先用动量守恒定律:mV0=2mv求出V0=4√5m/s^2然后能量守恒:Fs-μmgs=0.5×mV0^2求出s=1

一道物理题,请速回,一小车的表面由一光滑水平面和光滑斜面连接而成,其上方以求,球与水平面的接触点为a,与斜面的接触点为b

当车与小球做加速运动的时候,a点可能不受力,小球的加速度由斜面的支持力和重力的合力提供,这个时候他们合力的方向刚好是水平的,a点不受力,当车与小球做匀速直线运动的时候,b点不受力

如图所示,光滑的1/4圆弧轨道AB固定在竖直平面内,轨道的B点与水平面相切,其半径为OA=OB=R.有一小物体自A点由静

(1)设小物体的质量为m,由A到B,以水平面为参考面,根据机械能守恒定律,有  mgR=12mv2解得物体到达B点时的速率为 v=2gR(2)由A到C,根据动能定律,有mgR-μm

粗糙的水平面与竖直平面内的光滑圆弧轨道BC在B点平滑连接,圆弧轨道的半径R=1m.一小物块质量m=1kg,从AB上的D点

这是一道常规题,很简单——:(1)ma=umg,a=ug=2VB平方=2aS+V0平方=112(2)mgh=0.5mvB平方h=5.6所以最大高度h=2对下答案看对不?

如图所示,一光滑平行金属轨道平面与水平面成θ角.两轨道上端用一电阻R相

我是今年高考完的学生,这道题我会做,不过结果不一定对.我的答案是:C解释:首先看选项A由楞次定律有导体棒受安培力为阻力.因而,上升时由牛顿第二定律有F安培+mgsinθ=ma1下降时有mgsinθ-F

AB是倾角为θ的粗糙直轨道,BCD是光滑的圆弧轨道,AB恰好在B点与圆弧相切,圆弧的半径为R,一质量为m的物体(可视为质

..我大概想象出了你所给的图1,求通过总路程.这题目显然是用能量守恒来解,最终摩擦力做的功将等于P位置的重力势能减去B位置的重力势能(因为每次上到AB轨道都会因为摩擦力损失能量,直到最终恰好上不了AB

如图,半径R=1m的四分之一圆弧形光滑轨道竖直放置,圆弧最低点B与长为L=0.5m的水平面相切于B点,BC离地面高h=0

/>由牛顿第二定律N-mg=mv0^2/R  v0=由机械能守恒mgh=1/2mv0^2  h=0.5R=0.5m   2.由动能

在竖直平面内,光滑的圆弧轨道EA与粗糙水平面AB相切与A点,EA圆弧的半径大于2m,E是圆弧EA的最高点,h= 

再问:还有别的方法吗?不从能量考虑的再答:我比较擅长这样,别的我忘记了

如图,光滑弧形轨道与半径为r的光滑轨道相连,固定在同一个竖直平面内,将一只质量为m的小球由圆弧轨道上离水平面某一高度处由

要想使小球过最高点而不掉下来,在最高点时刚好由重力提供向心力,此时的速度是最小速度.mg=mv^2/r求得v^2=gr小球在轨道运动只有重力做功由动能定理、mg(h-2r)=1/2mv^2解得:h=2

如图所示,粗糙的水平面与竖直平面内的光滑圆弧轨道BC在B点平滑连接,圆弧轨道的半径R=1m.一小物块质量m=1kg,从A

(1)在到达B点前,只有滑动摩擦力f对物体做功,对物体从D到B的过程运用动能定理,设物体在B点时的速度为v,则f·SDB=mv2-mv02①又f=μmg②联立以上两式解得v=4m/s(2)F=F向+G

如图所示,半径为R的光滑圆弧轨道ABC竖直放置,A与圆心O等高,B为轨道的最低点,该圆弧轨道与一足够长的粗糙直轨道CD相

mgR-mgR/2=mgR/2主要就是能量守恒一部分重力势能用来克服摩擦力做功最后滑块就是在C点和C点在圆上对应的两点之间运动

如图所示,一小车的表面由一光滑水平面和光滑斜面连接而成,其上放一球,球与水平面的接触点为a,与斜面的接触点为b.当小车和

对小球受力分析如图所示:当小车做匀速运动时,小球也做匀速运动,小球受力平衡,此时Nb=0,Na=G,所以在b点处不一定受到支持力;若小车向左做匀加速直线运动,小球加速度方向向左,此时重力与斜面的支持力

一半径为R =25 m的四分之一光滑圆弧轨道,其下端与很长的水平雪道相接,如图所示,滑雪运动员在光滑圆弧轨道的顶端以水平

这个题没那么复杂,不需要用那么复杂的公式去解的,题目前面啰嗦那多,就是想说明运动员在光滑圆弧轨道上没有能量损失,所以这个题用机械能守恒定律去解就非常简单了:运动员的重力势能+初动能=摩擦力作功,设运行

(2011•湖州模拟)如图所示,竖直平面内有一与水平面成θ=30°的绝缘斜面轨道AB,该轨道和一半径为R的光滑绝缘圆弧轨

(1)滑块从D到P过程中做类平抛运动:Eq+mg=ma    得:a=2gRsin300=vDt    R=122gt2

半径为R的竖直光滑半圆轨道低端与光滑水平面相接,一小球以速度V0沿水平面向左运动,为使小球在圆轨道上运动时不脱离圆轨道,

1/2mv0^2=1/2mv^2+mg*2Rv^2=v0^2-4gR当小球在最高点时速度最小临界点时由重力提供向心力,速度大于临界点时小球对圆轨有压力,由圆轨弹力与重力共同提供向心力mg=mv^2/R

(2014•烟台二模)如图所示,一固定的14圆弧轨道.半径为1.25m,表面光滑,其底端与水平面相切,且与水平面右端P点

(1)物块从14圆弧滑至最低点过程中只有重力做功,根据动能定理有:mgR=12mv2−0得在轨道最低点物块的速度v=2gR=2×10×1.25m/s=5m/s物块在最低点时支持力和重力的合力提供圆周运

竖直平面内的轨道ABCD由水平轨道AB与光滑的四分之一圆弧滑道CD组成,AB恰与圆弧CD在C点相切,轨道放在光滑的水平面

注意紧扣功的定义,功的定义就是力乘以力的方向的位移,而不是“相对位移”.这个概念很多学生都会搞混!再问:但摩擦力不也给板做正功吗?再答:注意你的这个方程是选取的什么研究对象。选的哪个研究对象,就对哪个

静止在光滑水平面的小车左端有1/4光滑圆弧轨道,若一个滑块从圆弧轨道上端静止释放 待滑块滑上小车

把小车和滑块看作一个系统的话,这个系统在水平方向上受到的合外力为零.因此,系统在运动过程中满足动量守恒的条件.系统最初的动量为零(小车和滑块最初均静止),滑块滑上小车后系统的水平动量也为零.若对此题有

如图所示,一平板小车静止在光滑的水平地面上,车上固定着半径为R=0.7m的四分之一竖直光滑圆弧轨道,小车与圆弧轨道的总质

(1)当v0=3m/s时,滑块在B处相对小车静止时的共同速度为v1,由动量守恒定律:mv0=(M+m)v1…①对滑块,由动能定理:-μmg(s+L)=12mv21-12mv20…②对小车,由动能定理: