作业帮 > 数学 > 作业

急问(高等微积分)Let a and b be positive numbers.Find the value of ∫

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/01 07:20:42
急问(高等微积分)
Let a and b be positive numbers.Find the value of ∫[ax+b]dx in the following two ways:
a.Using elementary geometry,interpreting ∫[ax+b]dx as an area.
b.Using the First Fundamental Theorem (Integrating Derivatives).
注:上下界皆为 1 ,0
a)使用面积原理,直线在(0,1)下的图形为梯形,面积为
∫[ax+b]dx =(1/2)*(b+a+b)*1=(1/2)(a+2b)
b)积分
∫[ax+b]dx =(1/2)ax^2+bx在0到1上计算=(1/2)a+b=(1/2)(a+2b)