∫∫√R²-x²-y²dxdy,其中D是圆周x²+y²=Rx所围

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/14 11:34:53
设区域D是x^2+y^2≤1与x^2+y^2≤2x的公共部分,试写出∫∫f(x,y)dxdy在区域D,极坐标下先对r积分

x^2+y^2≤1与x^2+y^2≤2x有两个交点.分别从原点引线至两个交点,将公共部分分为三个区域,分别是(-π/2,-π/3),(-π/3,π/3),(π/3,π/2),这就是三个角的取值范围,用

计算二重积分∫∫sin√x^2+y^2dxdy=?,D:π^2≤x^2+y^2≤4π^2 我想问下∫ r sinr dr

用分步积分法∫rsinrdr=-∫rdcosr=-rcosr+∫cosrdr=(-rcosr+sinr)会了吧

求二重积分∫∫根号下(R^2 -X^2-Y^2)dxdy,其中积分区域D为圆周X^2+Y^2=RX.

极坐标标∫∫√(R²-x²-y²)dxdy=∫∫r√(R²-r²)drdθ=∫[-π/2→π/2]dθ∫[0→Rcosθ]r√(R²-r&#

求二重积分∫∫√(x2+y2)dxdy其中积分区域{(x,y)|x2+y2

用极坐标来解吧,令x=r*cosθ,y=r*sinθ那么显然√(x²+y²)=r,由x²+y²≤2x可以得到r²≤2r*cosθ即r≤2cosθ故r的

设T1=∫∫(x+y)^2dxdy T2=∫∫(x+y)^3dxdy 其中D为(x-2)^2+(y-1)^2

T1<T2首先T1=∫∫(x+y)^2dxdyT2=∫∫(x+y)^3dxdy.这两个相除(x+y).你仔细想一下,如果(x+y)始终>=1,或者始终<=1,那么就好判断了.因此现在问题就看在D范围内

计算二重积分∫∫|y-x^2|dxdy,其中区域D={(x,y)|-1

用y=x^2分区域为上下两部分D1和D2,原积分=∫∫D1(y-x^2)dxdy+∫∫D2(x^2-y)dxdy=∫(-1,1)dx∫(x^2,2)(y-x^2)dy+∫(-1,1)dx∫(0,x^2

计算二重积分∫∫1/(x^2+y^2+R^2)dxdy,其中D为x^2+y^2

转化到极坐标系,则x²+y²=r²,x=rcosθ,y=rsinθ积分域D={(x,y)|x²+y²≤R²}={(r,θ)|0≤r≤R,0≤

计算二重积分:∫∫(a-√(x^2+y^2))dxdy,D的范围:x^2+y^20

用几何法,就是求半球的体积πA^2/2就可以了再问:关键就是不知道怎么求啦,嘿嘿,大大,过程也给我写下嘛您QQ多少,我想当面请教下咯再答:你看清楚这道题的几何意义就是求半径为a的上半球

计算曲面积分I=∫∫ydxdz+(z+1)dxdy 其中Σ是圆柱面 x^2+y^2=R^2被x+z=

这个圆柱面在xoy上的投影为0所以dxdy=0写出圆柱面的参数方程x=Rcost,y=Rsint,0

设积分域D是以原点为中心,半径为r的圆域,求lim1/πr^2∫∫e^(x^2+y^2)cos(x+y)dxdy

用二重积分的中值定理即可,定理是说∫∫f(x,y)dxdy=f(x0,y0)*S,(x0,y0)为D内某一点,S为积分区域D的面积.本题中∫∫e^(x^2+y^2)cos(x+y)dxdy=[e^(x

计算二重积分 ∫∫cos(x+y)dxdy D={(x,y)|0

∫∫cos(x+y)dxdy∫dx∫cos(x+y)dy,x的上下限是π和0,y的上下限是π和0∫dx∫dsin(x+y)=∫[sin(π+x)-sinx]dx=∫-2sinxdx=2∫dcosx,x

计算∫∫D|cos(x+y)|dxdy,D:0

记O(0,0),A(π/2,0),B(π/2,π/2),C(0,π/2).则积分域D:为正方形OABC,连接AC,则在D1:△OAC内,x+y

计算lim(r->0)[1/∏r²]∫∫e^(x²-y²)cos(x+y)dxdy,其中D

lim(r->0)[1/πr²]∫∫e^(x²-y²)cos(x+y)dxdy,其中D为x²+y²≤r²由积分中值定理,在D内存在点(a,b

∫∫e^(x^2 + y^2)cos(x+y)dxdy

因为这题重点根本就不是求这个积分,而是求极限例如这是根据我以前做过的题目而推断的.若只是求这个积分的话,原函数不能用初等函数表示出.

二重积分的题∫∫(R^2-x²-y²)dxdy=(2/3)π ,D的范围是x^2+y^20求R答案是

用极坐标的方法来求:∫∫(R^2-x²-y²)dxdy=∫(-π)(π)dθ∫0(R){(R^2-p^2)p}dp==∫(-π)(π){[R^2p^2/2-p^4/4]0(R)}d

曲面积分∫∫xdydz+z^2dxdy/(x^2+y^2+z^2),其中曲面∑是由x^2+y^2=R^2及z=R,z=-

这题,昨天刚刚答了.这个不能用高斯定理,因为在这个比区域内,含有积分函数的奇点(0,0,0)所以分开来求即可.对于z=R和z=-R两个面∑1和∑2,因为dz=0而且两个面处,z=R处的投影,是朝上的圆

计算二重积分,∫∫4(x*2+y*2)dxdy,)其中D:x*2+y*2

直接用常规积分解比较繁琐,而且涉及到特殊形式积分,改为(r,θ)坐标,即∫∫4r^2drdθ,其中θ积分限为(0,2π),r为(0,1),这样积分得8/3πr^3|(0,1),结果为8/3π

∫∫(4-x-y)dxdy积分区域D为x^2+y^2

x=rcost,y=rsint,代入方程得r^2

∫∫(x+y)dxdy,D:x^2+y^2

x^2+y^2=x+y化成标准式(x-1/2)^2+(y-1/2)^2=1/2x=1/2+rcosαy=1/2+rsinαα∈[0,2π]r∈[0,√2/2]∫∫(x+y)dxdy=∫∫(1+rcos