x来自均匀分布x1-1 n 1为o的无偏估计量

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/24 19:59:57
f(x)的定义域为x≠0,任意x1,x2都有f(x1*x2)=f(x1)+f(x2)且x>1时f(x>o),f(2)=1

设x1=x>0,x2=2由条件得:f(2x)=f(2)+f(x)=1+f(x)因为2x>xf(2x)>f(x)所以是增函数

概率论指数分布,已知X1,X2为互相独立,都为指数分布,且参数都为1,证明为(0~1)的均匀分布,

可直接算分布函数P(Z<t),显然t≥1或t≤0时,有P(Z<t)=0.而对0<t<1,有所以Z~U(0,1),即为(0,1)上的均匀分布

设X~ε(λ),X1,X2,……是来自总体X的随机变量,和总体X独立的随机变量N服从均值为1/P的几何分布,求Y=(X1

这题就是把N从常量整数变成变量,如果是常量整数,Y服从正态分布,变成变量整数其实也服从正态分布,但此时E(Y)跟D(Y)就变了.但是也很好求,只是比较麻烦.E(X)=λ,D(X)=ε平方,E(N)=1

概率论题目设X1,X2,…,x6为来自正态总体N(0,o^2)的一个样本,随机变量Y=c[(X1+X2+X3)^2+(X

服从卡方分布.χ²√c(x1+x2+x3)属于标准正态分布D(√c(x1+x2+x3))=3cσ²=1c=1/3σ²自由度为2.再问:c前面那个符号是什么??再答:根号√

设X1,X2.Xn是来自均匀分布总体U(0,c)的样本,求样本的联合概率密度

均匀分布的总体U的概率密度为f(u)=1/c.总体U的独立样本X1,X2,...,Xn的联合概率密度为:f*(x1,x2,...,xn)=Πf(xi)=1/(c的n次方)再问:求具体步骤再答:这已经是

设总体x的分布函数为f(x),概率密度函数为f(x),(x1,x2…xn)是来自总体x的一个样本,x(1)和x(n)分别

X(1)f1(x)=n*(F(x))^(n-1)*f(x)F1(x)=(F(x))^nX(n)fn(x)=n*(1-F(x))^(n-1)*f(x)Fn(x)=(1-F(x))^n其中f(x)F(x)

)设X服从N(0,1),(X1,X2,X3,X4,X5,X6)为来自总体X的简单随机样本,Y=(X1+X2+X3+)^2

(X1,X2,X3,X4,X5,X6)为来自总体X的简单随机样本所以(X1+X1+X3)~N(0,3)(X4+X5+X6)~N(0,3)所以而1/√3(X1+X1+X3)~N(0,1);1/√3(X4

已知总体X的概率分布为P(X=i)=1/3,i=1,2,3.(X1,X2,X3)为来自X的样本,求E[x(1)],D[x

首先题目的意思是123三个数字,每个数字出现的可能性是一样的.然后现在是三个数字弄排列组合成一个三个数字组成的数组.那么用树状图就可以得出一共有27种组合的方式.E(X(1))的意思是求最小的那个数的

一道概率论题目设总体X服从(0,θ)上的均匀分布,从X中抽取容量为1的样本X1,则θ的无偏估计量是()A.U=X1,B.

注意EX1=EX=(0+θ)/2=θ/2(均匀分布的数字特征),所以有E(2X1)=θ,故选B

变量X1,X2,..,Xn互相独立且都服从(0,1)上的均匀分布,求U=max{X1,X2,..,Xn}和V=min{X

所有关于min、max这种题都有一个固定的下手点,就是U≤u→X[1]、X[2]…X[n]里面最大的都小于等于u→每个X[1]、X[2]…X[n]都小于等于u每个都小就可以通过独立事件的概率乘法公式计

设总体X服从区间(-1,1)上均匀分布,X1,X2,……Xn来自总体X的样本,求样本均值的数学期望和方差

设X1X2...Xn为来自总体X的样本,总体X服从参数为λ的指数分布,即f(x,λ)=λexp(-λx)求X(1)和X(n)_百度知道设X1X2...Xn为来自总体X的样本,总体X服从参数为λ的指数分

设X1,X2,...Xn+1为来自正态总体X~N(u,)的容量为n的样本,,为样本X1,X2...,Xn的样本均值和样本

上面这个网址有关于这个结论的详细证明,如有不懂可追问.

设X1,X2,...Xn+1为来自正态总体X~N(u,o^2)的容量为n+1的样本,X均,S^2为样本X1,X2...,

(1)如果对任意的n,有Xn+1=Xn+2计算X2=(5)X3=(7)X4=(9)①根据上面一小题的结果,请试着把Xn用n表示出来:Xn=(2n+1)②计算X2004=(2009)(2)如果对任意的n

设总体X服从区间(a,b)上的均匀分布,X1,X2,······Xn是来自总体X的一个样本,则样本均值的方差为

DX拔=DX/n=(b-a)^2/12n再问:为什么分母有一个n呢再答:DX拔=DX/n样本均值的期望=总体的期望样本均值的方差=n分之总体方差