设a是m*n矩阵 证明r(a)=m

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/15 06:19:59
设A是m*n矩阵,B是n*s矩阵,证明秩r(AB)

AB的列向量可由A的列向量线性表示所以r(AB)

设A是m*n矩阵 证明R(A)=m的充要条件是存在n*m矩阵B,使AB=E

充分性:因为,R(A)=m存在m阶可逆矩阵P和n阶可逆矩阵Q使得PAQ=【Em,0】设D=【Em,0】^T,则PAQD=Em,即AQDP=Em,令B=QDP即可得:AB=Em.充分性得证.必要性已知:

设a,b分别是m*n,n*s矩阵且b为行满值矩阵,证明:r(ab)=r(a)的详细解题

证明:首先有r(AB)≤min(r(A),r(B))≤r(A).再由B为行满秩,r(B)=n所以B可经过初等行变换化为(En,B1).所以存在可逆矩阵P使PB=(En,B1),且有r(AP^(-1))

设A是m*n矩阵,证明A的秩等于其转置矩阵的秩,即r(A)=r(A')

(A)等于A的行向量组的秩,等于A'列向量组的秩,等于r(A')

设A是m×n矩阵,B是n×r矩阵,已知秩(B)=n,AB=0,证明A=0

这样写法不好,按行分块应该写成B=B1B2...BnB共有n行,所以分成n个r维行向量.这个题目这样证吧:因为AB=0所以B^TA^T=0所以A^T的列向量都是B^Tx=0的解.又因为r(B)=n=r

设A为m×n实矩阵,证明r(A^T A)=r(A)

方法:证明齐次线性方程组AX=0(1)与A^TAX=0(2)同解即可显然(1)的解是(2)的解设X0是(2)的解,则A^TAX0=0所以X0^TA^TAX0=0所以(AX0)^T(AX0)=0所以AX

设A是m*n矩阵,证明:r(A)=r的充分必要条件是存在m阶可逆矩阵P和n阶可逆矩阵Q,

提示:可逆矩阵可以看成若干初等矩阵的乘积.用等价矩阵秩相等去证.

设A是m*n矩阵,B是n*m矩阵,证明:若r(A)=n,则r(AB)=r(B).

如果r(A)=n结合r(A)=n此外,又知道r(B)

设A是m×n的矩阵,B是n×p的矩阵,证明:若R(A)=n,R(AB)=R(B)

因为R(A)=n那么取A中n行构成A的基CC的大小是n*n设R(B)=y同理取B的基DD的大小是n*y因为R(C*D)=R(D)=R(B);所以R(AB)=R(B);

设A是m×n矩阵,R(A)=r,证明存在秩为r的m×n矩阵B与秩为r的r×n矩阵C,使A=BC

题目有点小错误,B的阶数是mxr,否则不能随便乘取m阶可逆阵P和n阶可逆阵Q使得A=PDQ,其中D=I_r000取B为P的前r列,C为Q的前r行即可.

设A是m*n实矩阵,证明:R(A'A)=R(AA')=R(A)

这类问题可用证明齐次线性方程组同解的方法显然,AX=0的解都是A'AX=0的解.反之,若X1是A'AX=0的解则A'AX1=0所以X1'A'AX1=0故(AX1)'(AX1)=0所以有AX1=0即A'

设A是m*n矩阵,B是n*s矩阵,已知r(B)=n,AB=0,证明:A=0

利用齐次方程级组只有零解的条件如图证明.经济数学团队帮你解答,请及时采纳.

设A是m*n矩阵,B为n×s矩阵,r(A)=r<n,且AB=0.证明:秩(B)≦n-r

证:将B按列分块为B=(b1,...,bs)因为AB=0所以A(b1,...,bs)=(Ab1,...,Abs)=0所以Abi=0,i=1,...,s即B的列向量都是齐次线性方程组AX=0的解向量所以

设A为m阶正定矩阵,B是m*n实矩阵,且R(B)=n,证明B'AB也是正定矩阵

首先证明任取n维列向量x≠0,Bx≠0因为R(B)=n,所以存在B的n级子式不为0,不妨设B前n行构成的子式|B1|不为0,则若B1x=0必有x=0,矛盾.所以B1x≠0,所以Bx≠0.这样因为A正定

设A为m×n矩阵,证明r(A)=1的充分必要条件是存在m×1矩阵α≠0与n≠1矩阵...

充分性:若A=ab^T,由于r(a)=r(b)=1,因此r(A)=1.综上,r(A)=1.必要性:若r(A)=1,则A的列向量组的秩是1,其极大无关组记为a,于是A的列都可以用a线性表出,即存在b1,

设A是n阶实对称矩阵,证明r(A)=r(A^2)

证明:因为A是实对称矩阵所以A相似于对角矩阵diag(λ1,λ2,...,λn)其中λi是A的特征值.因为相似矩阵有相同的秩,故r(A)=λ1,λ2,...,λn中非零数的个数.由A是实对称矩阵知A^

设A为m×n矩阵,证明AX=Em有解的充要条件是R(A)=m

证明:必要性:因为AX=Em有解所以Em的列向量组可由A的列向量组线性表示所以m=r(Em)=Em的列秩=m而A只有m行,所以r(A)再问:确定对吗?再答:呵呵保证

设m*n矩阵A,m阶可逆矩阵P及n阶可逆矩阵Q,矩阵B=PAQ,证明:r(A)=r(B)

由于P与Q可以写成有限个初等矩阵的乘积,例如设P=P1P2...Ps,Q=Q1Q2...Qt,所以B=PAQ=P1P2...PsAQ1Q2...Qt,而矩阵A左乘或者右乘初等矩阵相当于对矩阵A做了初等