设3阶矩阵A满足A-E,A-2E,A E不可逆

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/19 10:41:08
设n阶矩阵A满足A^2=A,求A的特征值,并证明E+A可逆.

设j是的一特征值,则有X,使得AX=jX.而又有A^2×X=A(AX)=A(jX)=j(AX)=j^2×X因为A^2=A,故有:j^2×X=j×X即j^2=j求得j=0j=1由A^2=A有A^2-A-

设n阶矩阵A满足A^2=A,且r(A)=r,则|2E-A|=

因为A^2=AAα=λαλ^2=λ解得λ=1或0由于r(A)=r所以n阶矩阵A与对角矩阵1..1.1...0.0.0相似,其中λ=1为r重特征值,λ=0为n-r个则2E-A的特征值为1(r重),2(n

设n阶方阵A满足A^3+2A-3E=0,证明矩阵A可逆,并写出A的逆矩阵的表达式.

因A^3+2A-3E=0变形A^3+2A=3E即A[1/3(A^2+2E)]=E也就是存在B=1/3(A^2+2E)使得AB=BA=E按定义知A可逆且逆矩阵A^(-1)=1/3(A^2+2E)

设n阶矩阵A满足A的m次方等于0,m是正整数,证明E-A可逆,且E-A的逆矩阵等于E+A+A^2+A^3+.+A^m-1

证明:由题设,n阶矩阵A满足A^m=0(零矩阵),因为(E-A)[E+A+A^2+A^3+.+A^(m-1)]=E-A^m=E-0=E,又因为[E+A+A^2+A^3+.+A^(m-1)](E-A)=

设n阶实方阵A满足A^2-4A+3E=0,证明 B=(2E-A)^T(2E-A)是正定矩阵

因为A^2-4A+3E=0所以A(A-2E)-2(A-2E)-E=0所以(A-2E)(A-2E)=E所以A-2E可逆所以2E-A可逆所以B=(2E-A)^T(2E-A)是正定矩阵--正定合同于单位矩阵

设n阶矩阵A满足A^2-3A+2E=0,证明A可相似对角化.

设a是A的特征值,则a^2-3a+2是A^2-3A+2E的特征值而A^2-3A+2E=0,零矩阵的特征值是0所以a^2-3a+2=0所以(a-1)(a-2)=0所以A的特征值是1或2.因为A^2-3A

设矩阵A满足A的平方=E,证明A+2E是可逆矩阵

由于(A+2E)(A-2E)=A^2-4E=-3E,所以(A+2E)(-A/3+2E/3)=E,因此A+2E可逆.

设矩阵A满足A^2=E.证明:A+2E是可逆矩阵.

设矩阵A满足A^2=E.===>(A+2E)(A-2E)=5E===>A+2E的逆矩阵为0.2(A-2E).

设n阶矩阵A满足A^2=A且A≠E,证明|A|=0

设j是的一特征值,则有X,使得AX=jX.而又有A^2×X=A(AX)=A(jX)=j(AX)=j^2×X因为A^2=A,故有:j^2×X=j×X即j^2=j求得j=0j=1由A^2=A有A^2-A-

设A是阶矩阵,且满足A^3=6E,矩阵B=A^2-2A+4E求证B可逆,并且求出B^-1

因为A^3-6E=0所以A(A^2-2A+4E)+2A^2-4A-6E=0所以A(A^2-2A+4E)+2(A^2-2A+4E)-14E=0所以(A+2E)(A^2-2A+4E)=14E所以B=A^2

设N阶矩阵A满足A^2-2A+3E=0 ,则秩A=N

对.A(A-2E)=-3E,A可逆,A^(-1)=-(A-2E)/3

设n阶逆矩阵A满足A^2-3A-6E=0 证明2E-A可逆并求其逆矩阵急

原方程A^2-3A-6E=0.可化为:(A-E)(A-2E)=8E,即可得到,A-2E可逆,且其逆矩阵为(A-E)/8

设4阶矩阵A满足|3E-A|,AAT=2E,|A|

AATa=Aλa这不对再问:AAa=Aλa=λAa跟这个不一样么再答:A^T≠A再问:但是AT的特征值也是λ呀??再答:A与A^T的特征值尽管一样但它们的特征向量并不相同!

设4阶方阵A满足/A+3E/=0,AA^T=2E,矩阵/A/

首先由|A+3E|=0知-3是A的一个特征值(a是A的特征值当且仅当|A-aE|=0),所以A^(-1)有特征值1/(-3)=-1/3;由AA^T=2E知|AA^T|=2,所以|A||A^T|=|A|

设n阶矩阵A满足A2+3A-2E=0.证明A可逆,并且求A的逆矩阵.

A²+3A-2E=0,所以A²+3A=2E,即A(A+3E)=2E,于是A(A/2+3E/2)=E,显然A为n阶方阵,而A和A/2+3E/2是同阶方阵,而两者相乘为E,所以由逆矩阵

设A为n阶实对称矩阵,且满足A^3-2A^2+4A-3E=O,证明A为正定矩阵

设λ是A的特征值则λ^3-2λ^2+4λ-3是A^3-2A^2+4A-3E的特征值而A^3-2A^2+4A-3E=0,零矩阵的特征值只能是0所以λ^3-2λ^2+4λ-3=0.λ^3-2λ^2+4λ-

设n阶矩阵A满足A^2-5A+5E=0,其中E为n阶单位矩阵,则(A-2E)^(-1)=

首先A^2-5A+6E=E,而A^2-5A+6E可分解为(A-2E)x(A-3E),所以(A-2E)^(-1)=A-3E.

设n阶矩阵A满足A^2=E,且|A+E|≠0,证明A=E

/>n阶矩阵A满足A^2=E,===》矩阵A的零化多项式无重根,并且根只能为正负1,===》矩阵A的最小多项式无重根,并且根只能为正负1,===》矩阵A可以对角化,并且矩阵A的特征值只能为正负1,又因

设3阶矩阵A满足3E+2A-A^2=0,r(E+A)+r(3E-A)=

3E+2A-A²=0(3E-A)(A+E)=0即R(3E-A)+R(A=E)≤3又因为(3E-A)+(A+E)=2E所以R(3E-A)+R(E+A)≥R(2E)=3最后,所以(3E-A)+R